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10
Spatial Sampling

E r i c D e l m e l l e

10.1. INTRODUCTION

When trying to make inferences about a
phenomenon, we are forced to collect a
limited number of samples instead of trying
to acquire information at every possible
location (see, e.g., Cochran, 1963; Dalton
et al., 1975; Hedayat and Sinha, 1991; and
Thompson 2002 for various summaries).
A full inventory would yield a clear picture
of the variability of the variable of interest,
although this process is very time-consuming
and expensive. Haining (2003) underlines
that the cost of acquiring information on
each individual may rule out a complete
census. Sparse sampling on the other hand
is cheap, but misses important features.
However, there are instances where the level
of precision may be the major motivation
of the sampling process, especially when
sampling remains relatively inexpensive. As
a rule of thumb, it is generally desirable
to have a higher concentration of samples
where exhaustive and accurate information is
needed, keeping in mind that the number of

samples should always be as representative as
possible of the entire population (Berry and
Baker, 1968).

When surveying a phenomenon character-
ized by spatial variation, it is necessary to
find optimal sample locations in the study
area D. This problem is referred to spatial
or two-dimensional sampling and has been
applied to many disciplines such as mining,
soil pollution, environmental monitoring,
telecommunications, ecology, geology, and
geography, to cite a few. Specific studies
on spatial sampling can be found in Ripley
(1981), Haining (2003), Cressie (1991),
Stehman and Overton (1996) and Muller
(1998). Spatial and non-spatial sampling
strategies share common characteristics:

1 the size m of the set of samples;
2 the selection of a sample design, limited by the

available budget;
3 an estimator (e.g., the mean) for the population

characteristic; and
4 an estimation of the sampling variance to

compute confidence intervals.
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Following Haining, spatial sampling
challenges can be divided into three different
categories. The first pertains to problems
concerned with estimating some non-spatial
characteristics of a spatial population; for
example, the average income of households
in a state. The second category deals with
problems where the spatial variation of a
variable needs to be known, in the form
of a map, or as a summary measure that
highlights scales of variation. The third
category includes problems where the
objective is to obtain observations that
are independent of each other, allowing
classical statistical procedures to assist in
classifying data.

10.1.1. Spatial structure

A common objective in both spatial and
non-spatial approaches is to design a
sampling configuration that minimizes the
variance associated with the estimation. In
this regard, the location of the samples
is very critical and depends heavily on
the structure of the variable. In non-spatial
problems, it may be crucial to stratify
the sampling scheme according to impor-
tant underlying covariates. This holds for
spatial phenomena as well. Unfortunately,
this variation is often unknown, and an
objective is to design an optimal sampling
arrangement, to obtain a maximum amount
of information. If we undersample in some
areas, the spatial variability will not be
captured. Oversampling on the other hand
can result in redundant data. Consequently,
not only the quantity of the samples is
important, but also their locations. This
chapter is concerned primarily with the
second category of sampling challenges, i.e.
capturing the spatial structure of the primary
variable.

10.1.2. Structure of the chapter

In this chapter, spatial sampling
configurations are reviewed along with

their benefits and drawbacks. Second,
the influence of geostatistics on sampling
schemes is discussed. Sampling schemes can
be designed to capture the spatial variation
of the variable of interest. Two common
objectives therein are the estimation of
the covariogram and the minimization
of the kriging variance. Third, methods
of adaptive sampling and second-phase
sampling are presented. Such methods
are of nonlinear nature, and appropriate
optimization techniques are necessary
to solve such problems. Finally, salient
sampling problems such as sampling in the
presence of multivariate information, and
the use of heuristics are discussed.

10.2. SPATIAL SAMPLING
CONFIGURATIONS

This section reviews significant sampling
schemes for the purpose of two-dimensional
sampling. In the following subsections I will
assume that a limited number of samples
m is collected within a study area denoted
D. The variable of interest Z is sampled
on m supports, generating observations
{z(si) | i = 1, 2, . . . m }. For ease of illustra-
tion, a square study area is used.

10.2.1. Major spatial
sampling designs

Random sampling
A simple random sampling scheme consists
of choosing randomly a set of m sample
points in D, where each location in D
has an equal probability of being sampled
(Ripley, 1981). The selection of a unit
does not influence the selection of any
other one (King, 1969). Figure 10.1(a)
illustrates the random configuration. This
type of design is also called uniform random
sampling since each point is chosen inde-
pendently uniformly within D. Practically,
two random numbers Ki and K ′

i are drawn

texreader
AQ: King (1969) publishing details

texreader
King,



[17:22 14/8/2008 5187-Fotheringham-Ch10.tex] Paper: a4 Job No: 5187 Fotheringham: Spatial Analysis (Handbook) Page: 167 165–186

SPATIAL SAMPLING 167

from the interval [0, 1]. Then the point
si, defined by the pair {xi, yi} is selected
such that:

xi = KiL, yi = K ′
i L, (10.1)

where L denotes the length of the study
area D (Aubry, 2000). The process is
repeated m-times. According to Griffith
and Amrhein (1997), the distribution of
the points may not be representative of
the underlying geographic surface, because
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Figure 10.1 From left to right, top to bottom: random, centric systematic, systematic
random, and systematic unaligned sampling schemes. Sampling size m = 100.
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Figure 10.1 Continued

for most samples drawn, some areas
will be oversampled while other will
be undersampled. The advantages of this
design however reside in its operational
simplicity, and its capacity to generate a
wide variety of distances among pairs of
points in D.

Systematic sampling
The population of interest is divided into
m intervals of equal size. The first element
is randomly or purposively chosen within
the first interval, starting at the origin.
Depending on the location of the first sample,
the remaining m − 1 elements are aligned
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regularly by the size of the interval �.
If the first sample is chosen at random, the
resulting scheme is called systematic random
sampling. When the first sample point is not
chosen at random, the resulting configura-
tion is called regular systematic sampling.
A centric systematic sampling occurs when
the first point is chosen in the center
of the first interval. The resulting scheme
is a checkerboard configuration. The most
common regular geometric configurations are
the equilateral triangular grid, the rectangular
(square) grid, and the hexagonal one (Cressie,
1991). Practically, consider the case where
D is divided into a set of small, square
cells of size � = L/

√
m. A first point

s1 = {x1, y1} is selected within the first cell in
the bottom left of D. The coordinates of s1 are
subsequently used to determine the following
point si = {xi, yi} (Aubry, 2000):

xi = x1 + (i − 1)�, yi = y1 + (j − 1)�

∀i, j = 1, . . .,
√

m. (10.2)

To locate sample points along the x- and
y-directions, it is imperative to have a desired
number of samples m for which

√
m must be

an integer value. The benefits of a systematic
approach reside in a good spreading of
observations across D, guaranteeing a rep-
resentative sampling coverage. Additionally,
the spreading of the observations prevents
sampling clustering and redundancy. This
design however presents two inconveniences:

1 the distribution of distances between points of D
is not sampled adequately because many pairs of
points are separated by the same distance; and

2 There is a danger that the spatial process
shows evidence of recurring periodicities that
will remain uncaptured, because the systematic
design coincides in frequency with a regular
pattern in the landscape (Griffith and Amrhein,
1997; Overton and Stehman, 1993).

The second drawback can be lessened
considerably by use of a systematic random
method that combines systematic and random

procedures (Dalton et al., 1975). One sample
point is randomly selected within each
cell. However, sample density needs to
be high enough to have some clustering
of observations or the spatial relationship
between observations cannot be built. From
Figure 10.1(c), some patches of D remain
undersampled, while others regions show
evidence of clustered observations. A system-
atic unaligned scheme prevents this problem
from occurring by imposing a stronger
restriction on the random allocation of
observations (King, 1969).

Stratified sampling
According to Haining (2003), there are
cases when local-area estimates are to be
examined, causing stratification to be built
into the sampling strategy. In stratified
sampling, the survey area (or D) is par-
titioned into non-overlapping strata1. For
each stratum, a set of samples is collected,
where the sum of the samples over all
strata must equal m. The knowledge of
the underlying process is a determining
factor in defining the shape and size of
each stratum. Some subregions of D may
exhibit stronger spatial variation, ultimately
affecting the configuration of each stra-
tum (Cressie, 1991). Smaller strata are
preferred in non-homogeneous subregions.
When points within each stratum are chosen
randomly, the resulting design is named
stratified random sampling. In Figure 10.2(a),
six strata are sampled in proportion to their
size. For instance, stratum A represents 30%
of D, therefore if m = 100, 30 sample points
will be allocated within A. Figure 10.2(b)
illustrates the allocation of one sample per
stratum (in casu the centroid), undersampling
larger strata.

10.2.2. Efficiency of spatial
sampling designs

The sampling efficiency is defined as
the inverse of the sampling variance.
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Figure 10.2 Stratified sampling designs with six strata of different sizes (m = 6 on the right
figure and m = 100 to the left).

According to Aubry (2000), the most efficient
design leads to the most accurate estima-
tion. Consider the estimation of the global
mean zD:

zD = 1

[D]

∫
D

z(s) ds. (10.3)

It is desirable, from a statistical standpoint
to select a configuration that minimizes the
prediction error of zD for a given estimator,
for instance the arithmetic mean:

z̄ = 1

m

m∑
i=1

z(si). (10.4)
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Efficiency is calculated for all possible real-
izations of the variable Z by Var ξ

[
Z∗

D − ZD
]

using σ 2
k , which is the geostatistical pre-

diction error, defined later. In terms of
the sampling variance, stratified random
sampling is at least always equally or more
accurate than random sampling; its relative
efficiency is a monotone increasing function
of sample size.

Spatial autocorrelation. Ideally, the density
of sample points should increase in locations
exhibiting greater spatial variability. Values
of closely spaced samples will show strong
similarities and it may be redundant to
oversample in those areas. The spatial
autocorrelation function summarizes the sim-
ilarity of the values of the variable of interest
at different sample locations, as a function
of their separating distance (Gatrell, 1979;
Griffith, 1987). Moran’s I (Moran, 1948,
1950) is a measure of the degree of spatial
autocorrelation among data points:

I = m

W

∑
i, j w(sij)(z(si) − z̄)(z(sj) − z̄)∑

i (z(si) − z̄)2

(10.5)

with W defined as a weight matrix w(sij),
m is the number of observations, the mean
of the sampled values is denoted by z̄
and z(si) is the measured attribute value at
location si. The weight w(sij) is a measure of
spatial proximity between points siand sj; for
example:

w(sij) = exp(−βd(sij)
2) (10.6)

where d(sij)2 is the squared distance between
location si and point sj. Moran’s I value is
not implicitly constrained within the interval
[−1, +1]. Spatial autocorrelation generally
decreases as the distance among sample
points increases. A positive autocorrelation
occurs when values taken at nearby samples
are more alike than samples collected further
away. When the autocorrelation is a linear

decreasing function of distance, stratified
random sampling has a smaller variance
than a systematic design (Quenouille, 1949).
If the decrease in autocorrelation is not linear,
yet concave upwards, systematic sampling
is more accurate than stratified random
sampling, and a centered systematic design,
where each point falls exactly in the middle
of each interval, is more efficient than a
random systematic sampling configuration
(Madow, 1953; Zubrzycki, 1958; Dalenius
et al., 1960; Bellhouse, 1977; Iachan, 1985).

10.2.3. Other sampling designs

Nested or hierarchical sampling
Nested or hierarchical sampling designs
require the study area D to be partitioned ran-
domly into sample units (or blocks) creating
the first level in the hierarchy, which is then
further subdivided into sample units nested
within level 1, and so forth (Haining, 2003).
These units can be systematically or irreg-
ularly arranged. As the process progresses,
the distances between observations decreases
(Corsten and Stein, 1994). One advantage of
a nested sampling design is that it allows for
multiple scale analysis and supports quadrat
analysis. Spatially nested sampling designs
may work well for geographic phenomenon
that are naturally clustered and for exploring
multiple scale effects. Hierarchical sampling
is also possible at the discrete level. In such
cases, it is desirable to select at first randomly
one or more counties in a state. Then within
these counties we might sample a number of
quadrats, or say, townships and finally, within
the latter, randomly select some farmsteads
(King, 1969).

In a multivariate case, dependent and
independent variables are hierarchically
organized and are thus not collected at
the same sampling frequency (Haining,
2003). The primary variable may exhibit
rapid change in spatial structure while
the secondary variables are much more
homogeneous. A hierarchical sampling
design captures such variation by collecting
one variable at points nested within larger
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sampling units so it can be collected more
intensively than another variable.

Clustered sampling
This type of sampling consists of the
random selection of groups of sites where
sites are spatially close ‘within’ groups
(Cressie, 1991). Clusters of observations are
drawn independently with equal probability.
In a first stage, when the population is
grouped into clusters, the clusters are first
sampled (Haining, 2003). Either all of the
observations in the clusters are included, or
only a random selection from it. Cluster
sampling is essentially useful in a discrete
case, when a complete list of the members
of a population cannot be obtained, yet a
complete list of groups (i.e., clusters) of the
variable is available. The method is also
useful in saving sampling cost.

10.3. SAMPLING RANDOM FIELDS
USING GEOSTATISTICS

Most classical statistical sampling methods
make no use of the spatial information
provided by nearby samples. Geostatistics
describes the spatial continuity that is an
essential feature of many natural phenomena.
It can be seen as a collection of statistical
methods, describing the spatial autocorre-
lation among sample data. In geostatistics,
multidimensional random fields are formal-
ized and modeled as stochastic processes
(see, e.g., Matérn, 1960; Whittle, 1963).
In other words, the variable of interest is
modeled as a random process that can take a
series of outcome values, according to some
probability distribution (Goovaerts, 1997).
Kriging is an interpolation technique that
estimates the value of the primary variable
at unsampled locations (usually on a set G
of grid points

{
sg

∣∣ g = 1, 2, . . ., G
}
, while

minimizing the prediction error. Using data
values of Z , an empirical semivariogram
γ̂ (h) summarizing the variance of values

separated by a particular distance lag (h)
is defined:

γ̂ (h) = 1

2d(h)

∑
|si−sj|=h

(z(si) − z(sj))2

(10.7)

where d(h) is the number of pairs of
points for a given lag value, and z(si) is
the measured attribute value at location si.
The semivariogram is characterized by a
nugget effect a, and a sill σ 2 where γ̂ (h)
levels out. The nugget effect is the spatial
dependence at micro scales, caused by
measurement errors at distances smaller than
the possible sampling distances (Cressie,
1991). Once the lag distance exceeds a
certain value r, called the range, there is
no spatial dependence between the sam-
ple sites. The variogram function γ̂ (h)
becomes constant at a value called the
sill σ 2. A model γ (h) is fitted to the
experimental variogram (e.g., an exponential
model). With the presence of a nugget
effect a:

γ (h) = a + (σ 2 − a)(1 − e−3h/r). (10.8)

The corresponding covariogram C(h) that
summarizes the covariance between any two
points is:

C(h) = C(0) − γ (h) = σ 2 − γ (h). (10.9)

The interpolated, kriged value at a location
s in D is a weighted mean of surrounding
values; each value is weighted according to
the covariogram model:

ẑ(s) =
I∑

i=1

wi(s)z(si) (10.10)

where I is the set of neighboring points
that are used to estimate the interpolated
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value at location s, and wi(s) is the weight
associated with each surrounding point.
The optimization of spatial sampling in
a geostatistical context first requires the
estimation of a model to express the spatial
dependence at different pairs of distances.
This is summarized in the covariogram
function. Secondly, such a model is then used
for optimal interpolation of the variable under
study (Van Groenigen, 1997).

10.3.1. Optimal geometric designs
for covariogram estimation

To compute the most representative covari-
ogram and to capture the main features of
spatial variability, a good spreading of sample
points across the study area is necessary (Van
Groenigen et al., 1999). In that context, sys-
tematic sampling (Figure 10.1(b)) performs
well. However, such a sampling design does
not guarantee a wide range of separating
distances (which is necessary to estimate the
covariogram), because:

1 distances are not evenly distributed; and
2 there are few pairs of points at very small

distances to estimate the nugget effect.

A systematic random or systematic
unaligned will generate a greater variety
of distance pairs. Another solution consists
of designing a sampling arrangement

where a subset of the m observations are
evenly spread across the study area D and
the remaining points are somewhat more
clustered (Figure 10.3), to capture the
covariance at very small distances.

Sample size and sample
configuration issues
Optimizing the sampling configuration to
estimate the parameters of the covariogram is
not an easy task. Webster and Oliver (1993)
suggested that a total of at least m = 150
samples over the study area is necessary.
Moreover, the reliability of the covariogram
is partly dependent on the number of pairs of
points available within each distance class.
In this context, the Warrick/Myers (WM)
criterion tries to reproduce an a priori defined
ideal distribution of pairs of points for
estimating the covariogram. The procedure
allows one to account for the variation in
distance. Following Van Groenigen (1997),
the WM-criterion is defined as:

Jw/m(S) = a
K∑

i=1

wi(ξ
∗
i − ξi)

2+b
K∑

i=1

σ (mi)

(10.11)

K∑
i=1

ξ∗
i = m(m − 1)

2
(10.12)

(a) (b)

Figure 10.3 A systematic sampling scheme of m = 36 points in D is improved by the
introduction of n = 12 additional samples (•) clustered among the initial samples.
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where i denotes a given lag class of the
covariogram, K represents the total number
of classes, the parameters a, b, and wi

are user-defined weights. The term ξ∗
i is

a prespecified number of point-pairs for
the ith class, ξi is the actual number of
distances within that class, and σ (mi) is the
standard deviation from the median of the
distance lag class (Warrick and Myers, 1987).
Equation (10.12) expresses the total number
of possible distance pairs, given the number
of samples. So for instance, when m = 4, six
pairs of points are generated.

Presence of anisotropy
Anisotropy (as opposed to isotropy) is a
property of a natural process, where the
autocorrelation among points changes with
distance and direction between two locations.
In other words, spatial variability is direction-
dependent. Spatial variables may exhibit
linear continuity, such as in estimating
riparian habitat along rivers, aeolian deposits,
and soil permeability along prevailing wind
directions. We talk about an isotropic process
however when there is no effect of direction
in the spatial autocorrelation of the primary
variable. It is generally desirable to aug-
ment the sampling frequency in the angle
of minimum continuity, since the spatial
gradient of variation is maximum in that
direction.

Impact of the nugget effect
Bogaert and Russo (1999) made an attempt to
understand how the covariogram parameters
are influenced by the choice of particular
sampling locations. Their objective was to
limit the variability of the covariogram
estimator. When the covariogram has no
nugget effect, the benefits of the optimization
procedure are somewhat diminished. In the
presence of a nugget effect, a random
sampling configuration will score poorly,
because of the limited information offered by
random sampling for small distances.

Using nested designs
A nested design allows good estimation of the
nugget effect at the origin. However, nested
sampling configurations produce inaccurate
estimation of the covariogram in comparison
to random and systematic sampling. This
occurs due to the rather limited part of an area
covered by the sampling scheme, yielding
a high observation density in subregions
of the area, and a low observation density
for other parts of the area. This in turn
generates only a few distances for which
covariogram values are available. Nested
sampling designs are especially unsuitable
when the observations collected according
to such a design are used subsequently
to estimate values at unvisited locations
(Corsten and Stein, 1994).

10.3.2. Optimal designs to
minimize the kriging variance

Kriging provides not only a least-squares
estimate of the attribute but also an attached
error variance (Isaaks and Srivastava, 1989),
quantifying the prediction uncertainty at a
particular location in space. This uncertainty
is minimal, or zero when there is no
nugget effect, at existing sampling points
and increases with the distance to the
nearest samples. A major objective consists
of designing a sampling configuration to
minimize this uncertainty over the study
area. This can be achieved when the covar-
iogram, representing the spatial structure
of the variable, is known a priori or
has been estimated. In this regard, optimal
sampling strategies have been suggested
to reduce the prediction error associated
with the interpolation process (Pettitt and
McBratney, 1993; Van Groenigen et al.,
1999). Equation (10.13) formulates the
kriging variance at a location s, where C−1

M
is the inverse of the covariance matrix
CM based on the covariogram function
(Bailey and Gatrell, 1995). M denotes the
set of initial samples and has cardinality m.
The term c is a column vector and cT
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the corresponding row vector, as given in
Equation (10.15):

σ 2
k (s) = σ 2 − cT (s) · C−1

M · c(s) (10.13)

CM =




σ 2 C1,2 . . . C1,m

C2,1 σ 2 · · · C2,m
...

...
. . .

Cm,1 Cm,2 · · · σ 2


 (10.14)

c =




σ 2

C2,1
...

Cm,1


 , cT = [

σ 2 C1,2 . . . C1,m
]
.

(10.15)

The total kriging variance TKV is
obtained by integrating Equation (10.13)
over D:

TKV =
∫

D
σ 2

k (s)ds. (10.16)

Computationally, it is easier to discretize D
and sum the kriging variance over all
grid points sg. The average kriging
variance AKV over the study area is
defined as:

AKV =
∑
g∈G

σ 2
k (sg). (10.17)

The only requirement to calculate the
kriging variance is to have an initial
covariogram and the locations of the m
initial sample points. It then depends
solely on the spatial dependence and
configuration of the observations (Cressie,
1991).

Illustration
Since continuous sampling is not feasible,
it is necessary to discretize the area into

a set of potential points. Seeking the best
sampling procedure becomes a combinatorial
problem. Figure 10.4 illustrates the kriging
variance associated with a random sampling
and a systematic random sampling from an
exponential model. Darker areas denote a
higher interpolation uncertainty, which is
increasing away from existing points. The
estimation error is low at visited points.

Distance-based criteria
It is possible to design sampling config-
urations considering explicitly the spatial
correlation of the variable (Arbia, 1994).
What would you do if you were in a dark
room with candles? You would probably
light the first candle at a random location
or in the middle of the room. Then you
would find it convenient to light the second
candle somewhere further away from the
first. How far away will depend on the
luminosity of the first candle. The stronger
the light, the further it can be located
from the first candle. You would then light
the third candle far away from the two
first ones. Such an approach – known as
Depending areal Units Sequential Technique
(DUST) – is an infill sampling algorithm,
and very suitable to locate points in mini-
mizing the kriging variance over D. Another
method, known as the Minimization of the
Mean of the Shortest Distances (MMSD)
requires all sampling points spread evenly
over the study area, ensuring that unvisited
locations are never far from a sampling
point. Both MMSD and DUST methods
assume:

1 prior knowledge of the spatial structure of the
variable; and

2 a stationary variable – an assumption violated in
practice.

Both criteria are purely deterministic, result-
ing in spreading pairs of points evenly across
the study area, similar to the systematic
configuration. Van Groenigen (1997) notes
that the area D is a continuous, infinite
plane. In reality, it is not physically possible
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Figure 10.4 The kriging variance of a systematic random pattern (right figure) reduces the
value of Equation 17 by 20% from a random pattern. Sample patterns are similar to the ones
in Figure 10.1.

to sample everywhere; the presence of
spatial barriers such as roads, buildings or
mountains restricts the sampling process and
limits the number and location of potential
points.

Impact of the nugget effect
What is the influence of the nugget effect
and sampling densities on the final sam-
pling configuration? As the ratio nugget/sill
increases, a different sampling configuration
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is reached, placing more observations near
the boundaries of the study area, because
of the high variance at short distances.
In that case, more samples are needed to
obtain the same level of objective function
(equation (10.17)) over D (Burgess et al.,
1981). When the nugget effect is maximum
(≈ sill), the covariogram is pure noise, and
the resulting optimal sampling scheme is
purely random, because no spatial correlation
is present. At maximum sampling density, the
estimation variance can never be less than the
nugget effect. When the variance among pairs
of points at very small distances (≈ nugget
effect) is very high, a hexagonal design will
perform best.

Presence of anisotropy
Which type of sampling design performs
better in reducing the maximum kriging
variance, when anisotropy is present? When
the process is isotropic, a systematic equi-
lateral triangle design will keep the variance
to a minimum, because it reduces the
farthest distance from initial sample points
to points that are not visited. A square
grid performs well, especially in the case
of isotropy (McBratney and Webster, 1981;
McBratney et al., 1981). When anisotropy
is present on the other hand, a square
grid pattern is preferred to a hexagonal
arrangement, although the improvement is
marginal (Olea, 1984).

Choice of a covariogram fitting model
Does the choice of a covariogram fitting
model affect the value of equation (10.17)?
According to Van Groenigen (2000), an expo-
nential model generates a point-symmetric
sampling configuration that is identical to a
linear model. However, the use of a Gaussian
model tends to locate sample points very
close to the boundary of D. This is explained
by the large kriging weights assigned to small
distance values (parabolic behavior at the
origin).

10.3.3. Sampling reduction

Sampling density reduction of an existing
spatial network is a problem related to sam-
pling designs and is relevant in many regions
of the world where funding for environmental
monitoring is decreasing. The process entails
lowering the number of required samples
to reach an effective level of accuracy.
Technically, it consists of selecting existing
samples from the original data set that will,
in combination with a spatial interpolation
algorithm, produce the best possible estimate
of the variable of interest, in comparison
with the results obtained if all sample
points were used (Olea, 1984). Usually, it
is assumed that the residuals come from a
stationary process, and that the covariogram
is linearly decreasing, with no nugget effect,
and that the process is isotropic. In a study
aimed at predicting soil water contents,
Ferreyra et al., (2002) developed a similar
sampling density reduction method, from
57 observations to 10 observations. With an
optimal arrangement of 10 samples, over
70% of the predicted water contents had an
error within ±10%, showing that a similar
level of confidence is reached with a limited
number of samples.

10.4. SECOND-PHASE AND
ADAPTIVE SAMPLING

When there is a need or desire to go out
in the field to gather more information
(i.e., additional samples) about the variable of
interest, we talk about adaptive and second-
phase sampling, depending on the study
objective. In the following subsections, both
techniques are discussed.

10.4.1. Adaptive sampling

Adaptive sampling finds its roots in the
concept of progressive sampling (Makarovic,
1973). It provides an objective and automatic
method for sampling, for example, terrain of
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varying complexity when sampling altitude
variation. As illustrated in Figure 10.5,
progressive sampling involves a series of
successive runs, beginning with a coarse
sampling grid and then proceeding to grids of
higher densities. The grid density is doubled
on each successive sampling run and the
points to be sampled are determined by a
computer analysis of the data obtained on
the preceding run. The analysis proceeds
as follows: a square patch of nine points
on the coarsest grid is selected and the
height differences between each adjacent

pair of points along the rows and columns
are computed. The second differences are
then calculated. The latter carries information
on the terrain curvature. If the estimated
curvature exceeds a certain threshold, it
becomes necessary on the next run to increase
the sampling density and sample points at the
next level of grid density.

A similar study was carried out by
Ayeni (1982) to determine the optimum
number and spacing of terrain elevation
data points to produce a Digital Elevation
Model (DEM). The importance of evaluating

(a)

25

20

20

25

1525

25

30

30

30

30

20

10

15

(b)

Figure 10.5 Initial systematic sampling of altitude is performed over the study in the top
figure. When a strong variation in elevation is encountered, the sampling density is
increased up to a desirable threshold is met.
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the adequate number of data points as
well as the appropriate sampling distribution
of such points, that in turn constitute a
good match to characterize a given terrain.
Determining a sufficient number of points
is not straightforward, since it depends on
terrain roughness in relation to the size
of the area occupied by the terrain. The
ideas suggested in progressive sampling were
later carried over to the field of adaptive
sampling (see Thompson and Seber, 1996).
A major difference with conventional designs
lies in the selection of additional samples
in adaptive designs, because the location
of a new sample will depend upon the
value of the points observed in the field.
In other words, the procedure for selecting
additional samples depends on the outcome
of the variable of interest, as observed
during the survey of an initial sampling
phase. The addition of a new sample
contributes to improve the confidence of
the sampling distribution. Adaptive sampling
is very efficient in the context of soil
contamination (Cox, 1999). How should a
risk manager decide where to re-sample
in order to maximize the information of
contamination? In this particular context
it is generally recommended to sample in
locations above a particular threshold and
draw a fixed number of additional samples
around them until subsequent measurement
values are below a pre-specified contam-
ination threshold. Figure 10.6 illustrates
the procedure of adaptive cluster sampling,
where sample points represent measurement
locations of hypothetical contamination rates.
On the left, contamination rates have been
measured at seven locations. A geographic
location is said to be at risk (and needs
remediation) when its value is above 0.7
or at 70% of the contamination threshold.
Call a property fathomed if samples have
been taken from its immediate neighbors.
A common choice is to define new neighbors
of a contaminated zone to the North, South,
East, and West: fathom each property on
the list by sampling and remove it from
the risk list when it has been fathomed.
In other words, the procedure re-samples

four neighboring locations of a contaminated
site. Once a site shows a contamination rate
under the threshold value, it is fathomed.
Otherwise, the procedure continues until a
trigger condition is satisfied (e.g., a maximum
number of additional samples is reached).
This approach has some limitations however,
because there is little rationale in taking
additional samples in areas where we know
that the probability of exceeding a particular
threshold is maximal.

10.4.2. Second-phase sampling

In second-phase spatial sampling, a set M of
m initial measurements has been collected,
and a covariogram C(h) has been calculated.
In a second-phase, the scientist goes out to
the field to augment the set of observations,
guided by the covariogram. The objective
function aims to collect new samples to
reduce the kriging variance or uncertainty
by as much as possible. Equation (10.18)
formulates the change in kriging variance
�σ 2

k over all grid points sg, when a set N of
size n containing new sample points is added
to our initial sample set M. The change �σ 2

k
is the difference between the kriging variance
calculated with initial sample points and the
kriging variance of the augmented set M ∪ N
containing [m + n] samples:

�σ 2
k =

[
TKVold − TKVnew

]

= 1

G


∑

g∈G

σk,old2 (sg) −
∑
g∈G

σ 2
k,new(sg)




(10.18)

σ 2
k,old(sg) = σ 2 − c(sg)︸︷︷︸

[1,m]
· C−1︸︷︷︸

[m]
· cT (sg)︸ ︷︷ ︸

[m,1]
(10.19)

σ 2
k,new(sg) = σ 2 − c(sg)︸︷︷︸

[1,m+n]
· C−1︸︷︷︸
[m+n]

· cT (sg)︸ ︷︷ ︸
[m+n,1]

.

(10.20)
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Figure 10.6 The cluster adaptive sampling procedure, illustrated in the context of toxic
waste remediation. A site is fathomed (+) when its toxicity rate does not exceed the
contamination value.

The objective function (equation (10.21)) is
to find the optimal set S∗ containing m + n
points that will maximize this change in
kriging variance (Christakos and Olea, 1992;
Van Groenigen et al., 1999), where S is a
specific sampling scheme:

MAX︸ ︷︷ ︸
{sm+1, ...,sm+n}

J(S) = 1

G

∑
g∈G

�σ 2
k (sg; S ).

(10.21)

For simplicity, the continuous region D is
usually approximated by a finite set P of
p points (Cressie, 1991). The set of new
points is selected from the set of potential

points P. Hence, there is a total of

(
p
n

)
possible sampling combinations and it is
too time-consuming to find the optimal set
using combinatorics. Figure 10.7 illustrates
the case where 50 sample points have been
collected in a first stage, leading to an
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Figure 10.7 An initial sampling network of m = 50 points (in white) has been augmented
with the addition of n = 10 new samples (in blue). The figure to the right displays the
improvement.
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exponential covariogram, with the sequential
addition of n = 10 new points and an
improvement in the objective function of
nearly 20%.

Weighting the kriging variance? This
use of a weighting function w (•) for the
kriging variance was originally suggested
by Cressie (1991) and has been applied
by Van Groenigen et al., (2000), Rogerson
et al., (2004), and Delmelle (2005). The
importance of a location to be sampled is
represented by a weight w(s). The objective
is to find the optimal sampling scheme S∗
containing m + n points that will maximize
this change in weighted kriging variance.
From equation (10.21):

MAX︸ ︷︷ ︸
{sm+1,...,sm+n}

J(S) = 1

G

∑
g∈G

w(sg)�σ 2
k (sg; S).

(10.22)

In an effort to detect contaminated zones in
the Rotterdam harbor, Van Groenigen et al.,
(2000) introduced the Weighted Means of
Shortest Distance (WMSD) criterion, offer-
ing a flexible way of using prior knowledge
on the variable under study. However, the
weights do not reflect the spatial structure
of the variable, but rather the scientist’s
perception of the risks of contamination. In
the first sampling phase, sampling weights
are assigned to sub-areas based on their
risks for contamination. In the second phase
however, a greater weight is assigned to
locations expected to exhibit a higher priority
for remediation. Four weighting factors are
considered with weights w = 1, 1.5, 2, and
3, leading to more intensive sampling where
the weight is higher. In a more recent study,
Rogerson et al., (2004) have developed a
second-phase sampling technique, allowing
re-sampling in areas where there is some
uncertainty associated with a variable of
interest, and hence not in areas where
the probability of an event occurring is
near 0 or 1. A greedy algorithm was proposed
to locate the points that would maximize the
change in weighted kriging variance.

Shortcoming of the use of the kriging
variance
Many authors have advocated the use of the
kriging variance as a measure of uncertainty.
It is unfortunately misused as a measure of
reliability of the kriging estimate, as noted by
several authors (Deutsch and Journel, 1997;
Armstrong, 1994). It is solely a function
of the sample pattern, sample density, the
numbers of samples and their covariance
structure. The kriging variance assumes that
the errors are independent of each other.
This means that the process is stationary,
an assumption usually violated in practice.
Stationarity entails that the variation of the
primary variable between two points remains
similar at different locations in space, as long
their separating distance remains unchanged.
Figure 10.8 illustrates non-stationarity in
two dimensions (Armstrong, 1994). The
objective in this particular example is to
interpolate the value of the inner grid
point, highlighted with a question mark. The
interpolation depends on the values of the
four surrounding points. Two scenarios are
presented. The one in b shows three very
similar values and an extreme one. The
one in a however shows four values in
a very narrow range. Assuming the spatial
structure is similar in both cases and since the
configuration of the data points is the same,
the kriging variances are identical. However,
we have more confidence in the left-hand
side scenario since there is less variation
among the neighbors. This illustrates that the
prediction error is not suitable for setting up
confidence intervals and should not be used
as an optimization criterion for additional
sampling strategies.

10.5. CURRENT RESEARCH
DIRECTIONS

10.5.1. Incorporating multivariate
information

Sample data can be very difficult to collect,
and very expensive, especially in monitoring
air or soil pollution for instance (Haining,
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Figure 10.8 Example of two-dimensional non-stationarity. Dark points are used as data
values to interpolate the center point (light gray). After Armstrong (1994).

2003). Secondary data can be a valuable
asset if they are available all over a study
area and combined within the primary
variable (Hengl et al., 2003). Secondary
spatial data sources include maps, national,
socioeconomic, and demographic census
data, but also data generated by public
sources (local and regional). This is very
valuable and there had been a dramatic
growth in the availability of secondary data
associated with DEMs and satellites (for
environmental data). Such secondary data is
easily integrated within a GIS framework
(Haining, 2003). In multi-phase sampling,
for instance, research has been confined to
the use of covariates in determining the
locations of initial measurements, whereby
sample concentration is increased where
covariates exhibit substantial spatial variation
(Makarovic, 1973). Ideally, secondary vari-
ables should be used to reduce the sampling
effort in areas where their local contribution
in predicting the primary variable is maxi-
mum (Delmelle, 2005). If a set of covariates
predicts accurately the data value where
no initial sample has been collected yet,
there is little incentive to perform sampling
at that location. On the other hand, when
covariates perform poorly in estimating the
primary variable, additional samples may
be necessary. The general issue pertains to

quantifying the spatial contribution given by
covariates.

10.5.2. Weighting the kriging
variance appropriately

Some current research has looked at ways
to weight the kriging variance. Intuitively,
one would like to sample at unvisited
locations, far away from existing ones. This
is accomplished using the kriging variance
as a sampling criterion. However, the spatial
variability of the primary variable is not
accounted for. It is recommended to weight
the kriging variance where the gradient
of the primary variable is maximum, i.e.,
where contour lines come close to one
another, because there is a rapid change
in the variable (Delmelle, 2005). It is also
desirable to reduce sampling effort by using
information provided by auxiliary variables,
when available.

10.5.3. The use of heuristics in
sampling optimization

In second-phase sampling, the set N of
additional samples will be chosen from
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a set P of candidate sampling locations.
This set is relatively large in practice, and
hence the number of possible solutions
forbids an exhaustive search for the best
answer (Michalewicz and Fogel, 2000).
A total enumeration of all the solutions
(≈ naive approach) is not possible, because
of the combinatorial explosion. Suppose,
for instance, that there is a potential
set of N = 900 points and that we are
willing to take n = 100 additional points

within that set. This generates

(
900
100

)
900

100 ≈ 9.384 × 10134 solutions, and hence
the use of a naive approach is not rec-
ommended (Goldberg, 1989; Grötschel and
Lovàsz, 1995). The search for an approximate
solution of complex problems is conducted
using a suitable heuristic method H. The
use of a heuristic is necessary to assist in
the identification of an optimal sample set
S∗ (or near optimal S+) ⊂ P. The heuristic
controls a process that intends to solve
this optimization problem. The set S∗ is
optimal to the objective function J defined
in equation (10.22). The efficiency of a
heuristic depends on its capacity to give
as often as possible a solution S+ close
to S∗ (Grötschel and Lovàsz, 1995). In
second-phase sampling, there are two dif-
ferent ways of supplementing an initial set.
Either n points are selected at one time
and added to the initial set all together,
or one point at a time is added n-times
to the initial set. The former is defined
as simultaneous addition and the latter
is known as sequential addition and is
suboptimal. Note that a hybrid approach
that would combine both techniques is
possible as well. In spatial sampling, limited
research has been devoted to comparing the
benefits and drawbacks of these heuristics.
The greedy (or myopic) algorithm has
been used by Aspie and Barnes (1990),
Christakos and Olea (1992) and Rogerson
et al., (2004). Simulated annealing has been
applied to spatial sampling problems in
Ferri and Piccioni (1992), Van Groenigen
and Stein (1998), and Pardo-Igúzquiza
(1998).

10.5.4. Spatio-temporal
sampling issues

Spatial sampling optimization as discussed in
this chapter is based on the assumption of
stationarity of the variable itself over time
(≈ no temporal variation). Variables such as
rainfall, temperature, and snowfall vary over
time and it is not possible to take a second
set of samples to improve the prediction of
these variables without affecting the stability
of the model. Work in this context has been
carried out by Lajaunie et al., (1999).

NOTE

1 Note that a systematic sampling scheme is a
special case of a stratified design in that the strata
are all squares of equal size.
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