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Coronavirus disease 2019 (COVID-19) was first identified in Wuhan, China in December 2019, 10 

and is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).  COVID-19 is 11 

a pandemic with an estimated death rate between 1% and 5%; and an estimated R0 between 2.2 12 

and 6.7 according to various sources.  As of March 28th, 2020, there were over 649,000 13 

confirmed cases and 30,249 total deaths, globally.  In the United States, there were over 115,500 14 

cases and 1,891 deaths and this number is likely to increase rapidly.  It is critical to detect 15 

clusters of COVID-19 to better allocate resources and improve decision-making as the outbreaks 16 

continue to grow.  Using daily case data at the county level provided by Johns Hopkins 17 

University, we conducted a prospective spatial-temporal analysis with SaTScan.  We detect 18 

statistically significant space-time clusters of COVID-19 at the county level in the U.S. between 19 

January 22nd-March 9th, 2020, and January 22nd-March 27th, 2020.  The space-time prospective 20 

scan statistic detected “active” and emerging clusters that are present at the end of our study 21 

periods – notably, 18 more clusters were detected when adding the updated case data.  These 22 

timely results can inform public health officials and decision makers about where to improve the 23 

allocation of resources, testing sites; also, where to implement stricter quarantines and travel 24 

bans.  As more data becomes available, the statistic can be rerun to support timely surveillance of 25 

COVID-19, demonstrated here.  Our research is the first geographic study that utilizes space-26 

time statistics to monitor COVID-19 in the U.S.         27 
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1. Introduction 45 

 46 

Coronavirus disease 2019 (COVID-19) was first identified in Wuhan city, Hubei 47 

province, China in December of 2019 (Huang et al. 2020; Li et al. 2020) and is caused by severe 48 

acute respiratory syndrome coronavirus 2 (SARS-CoV-2).  COVID-19 is a pandemic (cases 49 

confirmed in more than 140 territories) with an estimated death rate between 1% and 5% (Roser 50 

et al. 2020); and an estimated R0 between 2.2 and 6.7 (Liu et al. 2020; Sanche et al. 2020).  As of 51 

March 28th, 2020, there were over 649,000 confirmed cases and 115,500 total deaths, globally.  52 

In the United States (U.S.), there were over 115,000 cases and 1,891 deaths (Dong et al. 2020). 53 

Approximately 80% of confirmed cases are mild, with symptoms including fever, cough, and 54 

shortness of breath (Ruan et al. 2020).  Severe cases may experience pneumonia, multi-organ 55 

failure, and death (Mahase 2020).  The vast majority of deaths from COVID-19 are those with 56 

preexisting conditions (e.g. hypertension and heart disease), are immunocompromised, or above 57 

60 years old (Wu and McGoogan 2020).      58 

During an emerging infectious disease like COVID-19, it is critical to implement space-59 

time surveillance that can prioritize locations for targeted interventions, rapid testing, and 60 

resource allocation.  One such method is the space-time scan statistic (Kulldorff 1997), which is 61 

widely used to identify significant clusters of disease.  Space-time scan statistics supplement and 62 

can study basic rate maps of disease by relying on a variety of data models to determine whether 63 

the observed space-time patterns of a disease are due to chance or randomly distributed.  In other 64 

words, scan statistics detect clusters that are outliers (e.g. unexpected clustering given baseline 65 

conditions).  The statistic utilizes circles or ellipses (scanning window) that are centered on grid 66 

points and move (scan) systematically across a study area to identify clusters of cases (each 67 

window counts number of aggregated cases per geographic unit).  In its space-extension, the 68 
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location, size, and duration of statistically significant clusters of disease cases are subsequently 69 

reported (Desjardins et al. 2018; Owusu et al. 2019; Whiteman et al. 2019; Desjardins et al. 70 

2020). 71 

To routinely monitor outbreaks, the prospective space-time scan statistic (Kulldorff 2001) 72 

is one method to detect “active” or emerging clusters of disease, which can be used for 73 

surveillance during an ongoing epidemic.  The statistic will detect clusters that are “active” at the 74 

end of the study period; but as more data (e.g. confirmed cases) becomes available, the statistic 75 

can be rerun to confirm the presence and track the clusters in space and time, update relative 76 

risks for each location affected by a disease, and detect new emerging clusters.  The main 77 

purpose of using a prospective statistic rather than retrospective is to only focus on significant 78 

clustering that is “active” or present at the time of the analysis; which disregards clusters that 79 

may have existed previously, and are no longer a public health threat (Kulldorff 2001).  For 80 

example, the prospective space-time scan statistic has been utilized to detect emerging clusters of 81 

shigellosis (Jones et al. 2006), measles (Yin et al. 2007), thyroid cancer (Kulldorff 2001), and 82 

syndromic surveillance (Yih et al. 2010).  Since COVID-19 data are updated daily, our approach 83 

can contribute to timely monitoring of the pandemic, focusing on the United States in this study. 84 

This study contributes to ongoing COVID-19 surveillance efforts by detecting significant 85 

space-time clusters of reported cases at the county level in the U.S.  The space-time prospective 86 

statistic is especially useful since it detects active and emerging clusters of COVID-19, which 87 

can inform public health officials and decision-makers where and when to improve targeted 88 

interventions, testing sites, and necessary isolation measures to mitigate further transmission.  89 

Our prospective analysis can be rerun each day as new data become available to detect new 90 
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emerging clusters and identify areas where transmission is decreasing; suggesting where 91 

COVID-19 is potentially no longer a public health threat.   92 

To demonstrate the notion of detecting new emerging clusters when adding updated case 93 

data using the prospective space-time scan statistic, we report results for two time periods: 94 

January 22nd-March 9th, 2020 and January 22nd-March 27th, 2020.  Since COVID-19 is a highly 95 

infectious disease that can affect all segments of the population, we decided not to adjust for age.  96 

However, since the highest proportion of deaths occur among the elderly and those with 97 

preexisting conditions, an age-adjusted Bernoulli model accounting for cases and deaths could be 98 

conducted but is beyond the scope of this research.   99 

2. Data & Methods 100 

 101 

2.1 Data 102 

 103 
We collected COVID-19 case and location data from Johns Hopkins University's Center 104 

for Systems Science and Engineering GIS dashboard (Dong et al. 2020).  These data are freely 105 

available on their GitHub page (https://github.com/CSSEGISandData/COVID-19).  Temporally, 106 

these data are currently updated daily, and we use available data between January 22nd and 107 

March 27th, 2020.  Spatially, the daily confirmed cases if COVID-19 are aggregated at the 108 

county level.     109 

Using the spatial location information in the COVID-19 dataset, we assigned the case 110 

counts to the appropriate counties in a geographic information systems compatible file we 111 

obtained from the U.S. Census.  We focused our analysis on the contiguous 48 states and 112 

Washington D.C., excluded cases recorded at the state-level (no county-level information 113 

available) and cases diagnosed on the “Grand Princess” and “Diamond Princess” cruise ships. 114 

The infected passengers on the cruise ships were sent to various quarantine locations throughout 115 

https://github.com/CSSEGISandData/COVID-19
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the U.S. and their exact locations are not provided in the dataset.  The COVID-19 dataset reports 116 

cumulative case counts (Figure 1). Therefore, for each day in the study period, we subtracted the 117 

previous day’s count (nt-1) from the current day’s count (nt) to obtain the number of new cases. 118 

 119 

Figure 1:  Cumulative number of COVID-19 cases in the contiguous United States 120 

between January 22nd and March 27th, 2020 (used for the statistical analysis). 121 

 122 

2.2 Prospective Poisson space-time scan statistic 123 

 124 
 To identify space-time clusters that are still occurring or “active”, we utilize the 125 

prospective version of the Poisson space-time scan statistic (Kulldorff 2001; Kulldorff et al. 126 

1998) and implemented in SaTScanTM (Kulldorff 2018).  As such, we can identify COVID-19 127 

clusters that are still active (excess risk still present) during the last day in our dataset.  In other 128 

words, we detect space-time clusters of COVID-19 that are emerging and “disregard” clusters in 129 

the study period that do not have a statistically significant excess relative risk (i.e. more observed 130 

than expected COVID-19 cases).  In other words, the prospective statistic evaluates potential 131 

clusters that are still occurring at the end of the study period.  The space-time scan statistic 132 

(STSS) employs moving cylinders that scan the U.S. for potential space-time clusters of COVID-133 
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19 cases.  The base of the cylinder is the spatial scanning window and the height reflects the 134 

temporal scanning window.  The center of the cylinder is defined as the centroid of each U.S. 135 

county.   136 

Next, each cylinder is expanded until a maximum spatial and temporal upper bound is 137 

reached, while each cylinder is a potential cluster.  We set the upper bounds to have a maximum 138 

spatial and temporal scanning window size of 10% of the population at-risk to avoid extremely 139 

large clusters; and 50% of the study period, respectively.  Each cluster’s duration was set to a 140 

minimum of 2 days and a cluster must contain at least 5 confirmed cases of COVID-19.  In other 141 

words, an unknown large number of cylinders of different spatial and temporal sizes are 142 

generated around each centroid until the maximum spatial and temporal thresholds are reached; 143 

the observed and expected case counts are computed within each cylinder, which are derived 144 

from the total number of centroids captured in each cylinder.    145 

We selected the discrete Poisson data model, where we assume that the COVID-19 cases 146 

follow a Poisson distribution according to the population of the geographic region.  The null 147 

hypothesis H0 states that the model reflects a constant risk with an intensity μ, which is 148 

proportional to the at-risk population.  The alternative hypothesis HA states that the number of 149 

observed COVID-19 cases exceeds the number of expected cases derived from the null model 150 

(elevated risk within a cylinder).  The expected number of COVID-19 cases (μ) under the null 151 

hypothesis H0 is derived as follows in Equation 1: 152 

𝜇 =  𝑝 ∗  
𝐶

𝑃
  

(1) 

with p the population in i; C the total COVID-19 cases in the U.S.; and P the total estimated 153 

population in the U.S.  Note that the model assumes that the population is static for each location 154 

at each time period.     155 
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A maximum likelihood ratio test is used to identify scanning windows with an elevated 156 

risk for COVID-19, which is defined in Equation 2:   157 

𝐿(𝑍)

𝐿0
=

(
𝑛𝑍

𝜇(𝑍)
)

𝑛𝑍

(
𝑁 − 𝑛𝑍

𝑁 − 𝜇(𝑍)
)

𝑁−𝑛𝑍

(
𝑁

𝜇(𝑇)
)

𝑁  (2) 

with L(Z) the likelihood function for cylinder Z, and 𝐿0 the likelihood function for H0;  𝑛𝑍 the 158 

number of COVID-19 cases in a cylinder; 𝜇(𝑍) the number of expected cases in cylinder Z; N 159 

the total number of observed cases for the entire U.S. across all time periods; and 𝜇(𝑇) the total 160 

number of expected cases in the study area across all time periods.  The cylinder has an elevated 161 

risk when the likelihood ratio is greater than 1, that is 
𝑛𝑍

𝜇(𝑍)
>  

𝑁−𝑛𝑍

𝑁−𝜇(𝑍)
 . Furthermore, the space-162 

time scan statistic uses different cylinder sizes, and the cylinder with the highest likelihood ratio 163 

(maximum) is the most likely cluster. Monte Carlo testing is utilized (999 simulations) to assess 164 

the statistical significance of space-time clusters.  Each simulation is conditioned to the same 165 

number of cases, and the likelihood is computed, so we obtain 999 likelihood ratios for each 166 

candidate cluster representing the distribution of the likelihood ratio under H0.  Secondary 167 

clusters are also reported if they are statistically significant at the p < 0.05 level.   168 

 To circumvent the assumption that the relative risk of COVID-19 is homogenous 169 

throughout a significant space-time cluster, we also report and visualize the relative risk for each 170 

U.S. county that belongs to a cluster.  The relative risk (RR) for each location belonging to a 171 

cluster is derived from Equation 3:  172 

𝑅𝑅 =  
𝑐/𝑒

(𝐶 − 𝑐)/(𝐶 − 𝑒)
 

(3) 

Where c is the total number of COVID-19 cases in a county, e is the total number of expected 173 

cases in a county, and C is the total number of observed cases in the U.S.  RR is the estimated 174 
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risk within a location divided by the risk outside of the location (i.e. everywhere else).  For 175 

example, if a county has a RR of 2.5, then the population within that county are 2.5 times more 176 

likely to be exposed to COVID-19.  The reported clusters also have a relative risk, which is 177 

derived the same way as Equation 3; but the clusters RR is estimated risk (observed/expected) 178 

divided by the risk outside of the cluster.            179 

The incubation period of COVID-19 can be up to 2 weeks, so we detected active clusters 180 

that spanned ≤ 42 days, which is approximately three incubation periods of onset of the most 181 

current COVID-19 case in the dataset.  The results identify statistically significant emerging 182 

clusters of COVID-19 in the U.S. at the county level between January 22nd-March 9th, 2020 in 183 

section 3.1 and between January 22nd-March 27th, 2020 in section 3.2.  As the pandemic 184 

continues, new data can be added the prospective space-time scan statistic to monitor active 185 

clusters and identify areas that no longer are experiencing excess incidence based on available 186 

confirmed cases (i.e. areas that no longer have an excess public health risk).     187 

3. Results 188 

 189 

3.1 County-level results – January 22nd-March 9th, 2020 190 

 191 
Table 1 provides the characteristics of the statistically significant emerging space-time 192 

clusters of COVID-19 at the county level from January 22nd and March 9th, 2020.  Cluster 1 is 193 

found in the northwestern U.S. and includes 23 counties with a RR > 1 (i.e. more observed than 194 

expected cases).  King County in Washington has a RR of 135.4 with 82 observed cases at the 195 

time of this study, and Santa Clara County in California contained 36 observed cases and a RR of 196 

62.  Cluster 2 only contains one county (Westchester) in New York with a RR of 639 and 97 197 

observed cases.  Cluster 3 contains counties in the mid-Atlantic region of the U.S. with nine 198 

counties exhibiting a RR > 1.  Nassau County in Long Island, New York contained the highest 199 
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RR of 80.4 with 17 observed cases.  Cluster 4 is in eastern Texas and contains two counties with 200 

a RR > 1 (Fort Bend – RR = 47.9; Harris – RR = 8).  Cluster 5 is located in northern Georgia 201 

with 4 counties with an elevated relative risk: Polk (RR = 104.7), Fulton (RR = 21.3), Cobb (RR 202 

= 17.7), and Cherokee (RR = 17.5).  Cluster 6 is located in the Midwest, where Summit County, 203 

Colorado (RR = 250.9) and Johnson County, Iowa (RR = 154.9) exhibits the highest relative 204 

risk.  Cluster 7 contains two counties in southern California: Los Angeles (RR = 6.8) and Orange 205 

(RR = 4.9).  Finally, Cluster 8 is located in southern Florida and contains 4 counties with an 206 

elevated risk: Charlotte (RR = 56), Manatee (RR = 52.6), Lee (RR = 27.5), and Broward (RR = 207 

16).                         208 

Table 1: Emerging space-time clusters of COVID-19 from January 22nd-March 9th, 2020 at 209 

the county-level (RR = relative risk) 210 

Cluster Duration (days) p Observed Expected RR 
# of 

counties 

# of 

counties 

with RR >1 

1 Feb 29th - Mar 9th <0.001 207 7.9 43.2 107 23 

2 Mar 4th - Mar 9th <0.001 97 1.5 639 1 1 

3 Mar 5th - Mar 9th <0.001 53 5.1 11.3 66 9 

4 Mar 5th - Mar 9th <0.001 12 0.9 13.1 12 2 

5 Mar 3rd - Mar 9th <0.001 10 0.6 16.3 12 4 

6 Mar 6th - Mar 9th 0.001 17 2.8 6.3 552 10 

7 Mar 4th - Mar 9th 0.002 16 2.5 6.4 2 2 

8 Mar 7th - Mar 9th 0.017 8 0.5 14.4 13 4 

 211 

 212 
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 213 
Figure 2: Spatial distribution of emerging space-time clusters of COVID-19 at the county-214 

level from January 22nd-March 9th, 2020 215 

 216 

Figure 2 illustrates the extent of eight emerging space-time clusters of COVID-19 at the 217 

county-level from January 22nd to March 9th, 2020.  We highlight both King (Washington) and 218 

Westchester (New York) counties, which are known as the first major hotspots of the outbreaks 219 

in the US.  King County is known to have the first U.S. case of COVID-19, which was 220 

introduced by recent travelers in China; leading to deadly outbreaks in nursing homes and the 221 

surrounding area (Bryson-Cahn et al. 2020).  Westchester County includes the city of New 222 

Rochelle, which was the location of New York’s initial outbreak and was subject to a 223 

containment zone spanning a one-mile radius (Wallis 2020).  The Bay area in California 224 

(especially San Francisco) has also been as a major hotspot of COVID-19, which was one of the 225 

first areas in the U.S. to implement a “shelter-in-place” order (Fracassa 2020). Counties with a 226 

relative risk of 0 are more transparent to focus solely on the counties with an elevated risk that 227 
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“contribute” to the emerging clusters.  Figure 1 indicates that many densely populated counties 228 

were within an emerging cluster across the U.S., while we continue to monitor the outbreaks and 229 

detect new clusters in the following section using eighteen more days of case data.    230 

3.2 County-level results – January 22nd-March 27th, 2020 231 

 232 
 Table 2 summarizes the characteristics of the twenty-six statistically significant emerging 233 

space-time clusters of COVID-19 at the county level between January 22nd and March 27th, 234 

2020.  Cluster 1 (the most likely cluster) contains 14 counties in New York (NY), Connecticut, 235 

and New Jersey, and Manhattan, NY exhibits the highest RR of 96.8; which was also the highest 236 

RR in the U.S. at the time of the analysis.  Cluster 2 contains 3 counties in Michigan, and Wayne 237 

County exhibiting the highest RR of 4.9.  Cluster 3 contains two parishes in the southeastern part 238 

of Louisiana and included the New Orleans consolidated city-parish exhibiting a RR of 9.0.   239 

Clusters 4, 9, 10, 12-16, 23, and 26 contains one county each: Cook, Illinois (RR = 3.1), 240 

Blaine, Idaho (RR = 19.1) which includes the town of Sun Valley and is considered the Idaho 241 

COVID-19 hotspot at the time of this publication, Marion, Indiana (RR = 3.7), Summit, Utah 242 

(RR = 8.2), Cleburne, Arkansas (RR = 12.8), Caddo, Louisiana (RR = 4.5), Bartow, Georgia (RR 243 

= 3.7), Kershaw, South Carolina (RR = 4.5), Clark, Arkansas (RR = 5.3)  and Wasatch, Utah 244 

(RR = 4.2), respectively. Cluster 5 contains 4 counties in northern Washington State, with 245 

Snohomish County exhibiting the highest RR of 2.6.  Cluster 6 contains 5 counties in Georgia, 246 

and Dougherty County exhibits the highest RR of 8.6.  Cluster 7 contains 3 counties in Colorado 247 

with a RR > 1, and Gunnison County exhibiting the highest RR of 9.8.  Cluster 8 is the largest 248 

cluster that contains 43 counties throughout New York State, Ohio, Pennsylvania, West Virginia, 249 
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Virginia, North Carolina, Maryland, and New Jersey with a RR > 1, with Monmouth County, 250 

New Jersey exhibiting the highest RR of 8.4.   251 

Cluster 11 contains 3 counties in Florida, and Broward County exhibits the highest RR of 252 

2.2.  Cluster 17 contains 11 counties in Georgia with a RR > 1, and Carroll County exhibits the 253 

highest RR of 3.9.  Cluster 18 contains 4 counties in Indiana with a RR > 1, and Decatur County 254 

exhibits the highest RR of 11.5.  Cluster 19 contains 2 counties in Missouri, and St. Louis 255 

exhibits the highest RR of 1.9.  Cluster 20 contains two counties in California, and San Francisco 256 

exhibits the highest RR of 1.9.  Cluster 21 contains 3 counties in Tennessee with a RR > 1, and 257 

Davidson County exhibits the highest RR of 1.7.  Cluster 22 contains 3 counties in Colorado, and 258 

Denver exhibits the highest RR of 1.7.  Cluster 24 contains 3 counties in Alabama, and Walker 259 

County exhibits the highest RR of 3.0.  Finally, Cluster 25 contains 5 counties in Mississippi 260 

with a RR > 1, and Quitman County exhibits the highest RR of 6.9. 261 

Cluster 11 contains 3 counties in Florida, and Broward County exhibits the highest RR of 262 

2.2.  Cluster 17 contains 11 counties in Georgia with a RR > 1, and Carroll County exhibits the 263 

highest RR of 3.9.  Cluster 18 contains 4 counties in Indiana with a RR > 1, and Decatur County 264 

exhibits the highest RR of 11.5.  Cluster 19 contains 2 counties in Missouri, and St. Louis 265 

exhibits the highest RR of 1.9.  Cluster 20 contains two counties in California, and San Francisco 266 

exhibits the highest RR of 1.9.  Cluster 21 contains 3 counties in Tennessee with a RR > 1, and 267 

Davidson County exhibits the highest RR of 1.7.  Cluster 22 contains 3 counties in Colorado, and 268 

Denver exhibits the highest RR of 1.7.  Cluster 24 contains 3 counties in Alabama, and Walker 269 
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County exhibits the highest RR of 3.0.  Finally, Cluster 25 contains 5 counties in Mississippi 270 

with a RR > 1, and Quitman County exhibits the highest RR of 6.9. 271 

Figure 3 shows the locations and spatial patterns of the twenty-six emerging space-time 272 

clusters of COVID-19 at the county level in the U.S. between January 22nd and March 27th, 2020.  273 

Adding updated COVID-19 case data produced eighteen more emerging clusters than our 274 

analysis in section 3.1.  The resulting space-time clusters are smaller in size and more “intense” 275 

when running the prospective statistic between January 22nd and March 27th.  Notably, the 276 

relative risk decreased in Washington State’s counties, especially King County where the 277 

COVID-19 outbreak was first introduced in the U.S.  It is important to highlight that the relative 278 

risk throughout the U.S. increased using case data until March 27th; compared to the first analysis 279 

in section 3.1 that ended on March 9th.  Furthermore, the northeastern U.S. is clearly the 280 

epicenter of COVID-19 in the country as shown in Figure 2.  Figure 2 also shows that some 281 

clusters in Figure 1 have “disappeared” (e.g. southern California and Texas), likely due to 282 

increases in testing and vast increases of confirmed cases in many locations after March 9th.  283 

Overall, the reported space-time clusters in Table 2 and Figure 2 tell a story of the rapid COVID-284 

19 dispersal and transmission across the U.S.            285 

 286 

 287 

 288 

 289 

 290 

 291 

 292 

 293 

 294 
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 296 

 297 

Table 2: Emerging space-time clusters of COVID-19 from January 22nd-March 27th, 2020 298 

at the county level (RR = relative risk) 299 

Cluster Duration (days) p Observed Expected RR 
# of 

counties 

# of 

counties 

with RR 

>1 

1 Mar 19th - Mar 27th <0.001 56,189 3,343.8 33.1 14 14 

2 Mar 21st - Mar 27th <0.001 3,036 835.8 3.7 3 3 

3 Mar 19th - Mar 27th <0.001 1,477 228.0 6.5 2 2 

4 Mar 24th - Mar 27th <0.001 1,953 636.4 3.1 1 1 

5 Mar 17th - Mar 27th <0.001 1,929 1,032.9 1.9 4 4 

6 Mar 20th - Mar 27th <0.001 251 35.3 7.1 5 5 

7 Mar 11th - Mar 27th <0.001 218 30.5 7.2 4 3 

8 Mar 13th - Mar 27th <0.001 3,214 2,173.1 1.5 273 43 

9 Mar 8th - Mar 27th <0.001 93 4.8 19.1 1 1 

10 Mar 25th - Mar 27th <0.001 323 87.9 3.7 1 1 

11 Mar 26th - Mar 27th <0.001 630 294.0 2.1 3 3 

12 Mar 19th - Mar 27th <0.001 95 11.6 8.2 1 1 

13 Mar 23rd - Mar 27th <0.001 49 3.8 12.8 1 1 

14 Mar 25th - Mar 27th <0.001 100 22.2 4.5 1 1 

15 Mar 20th - Mar 27th <0.001 98 26.1 3.7 1 1 

16 Mar 21st - Mar 27th <0.001 63 14.1 4.5 1 1 

17 Mar 26th - Mar 27th <0.001 294 189.7 1.5 14 11 

18 Mar 26th - Mar 27th <0.001 44 12.5 3.5 8 4 

19 Mar 26th - Mar 27th <0.001 146 79.8 1.8 2 2 

20 Mar 26th - Mar 27th <0.001 175 101.5 1.7 2 2 

21 Mar 24th - Mar 27th <0.001 205 127.2 1.6 4 3 

22 Mar 25th - Mar 27th <0.001 198 125.8 1.5 3 3 

23 Mar 23rd - Mar 27th 0.003 18 3.4 5.3 1 1 

24 Mar 25th - Mar 27th 0.003 143 86.4 1.6 3 3 

25 Mar 26th - Mar 27th 0.004 48 19.1 2.5 8 5 

26 Mar 23rd - Mar 27th 0.019 21 5.1 4.1 1 1 
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 300 
 301 

302 
Figure 2: Spatial distribution of emerging space-time clusters of COVID-19 at the county 303 

level from January 22nd-March 9th, 2020 304 
 305 

4. Discussion 306 

 In this paper, we utilized a prospective space-time scan statistic to detect emerging 307 

clusters of COVID-19 in the United States at the county level, providing results at two distinct 308 

time periods.  To our knowledge, this study is the first one that utilizes space-time scan statistics 309 

to detect emerging clusters of COVID-19 in the United States. The prospective scanning statistic 310 

is a valuable surveillance tool to monitor disease outbreaks as they unfold (Kulldorff and 311 

Kleinman 2015).  We suggest that prospective scanning statistics should be utilized in the suite 312 

of tools available to public health departments and researchers.  It is important to conduct rapid 313 

statistical analysis to supplement basic case and disease rate maps available to better understand 314 

the highest risk areas of COVID-19; and how risk will progress throughout the duration of this 315 
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pandemic.  Since March 18th, 2020, each of the 50 U.S. states and Washington D.C. reported a 316 

confirmed case of COVID-19 (Dong et al. 2020).  The prospective approach utilized in this study 317 

can be useful for state and local health departments to monitor the outbreaks in a timely fashion.          318 

 The main strength of the prospective approach is the ability to add updated COVID-19 319 

counts and rerun the statistic to identify new emerging clusters; while also tracking the 320 

previously detected clusters to determine if they are growing or shrinking in magnitude.  Doing 321 

so can help determine if current mitigation and isolation techniques are effective at curbing the 322 

spread of COVID-19.  We demonstrate the notion of the prospective approach by presenting 323 

results between January 22nd – March 9th, 2020, and January 22nd – March 27th, 2020.  The 324 

updated results in section 3.2 showcase the evolution of the COVID-19 outbreaks in the U.S., 325 

while 18 more clusters were detected using the updated daily case data.  Notably, Manhattan 326 

became the epicenter of COVID-19 in the U.S., with a staggering 25% of the confirmed cases 327 

across the country.  Furthermore, New Orleans and the Fort Lauderdale/Miami areas became 328 

hotspots in the southern U.S.  Wayne County, Michigan contains Detroit, which also was 329 

detected as one of the major hotspots in the U.S when adding the updated daily cases to the 330 

prospective scan statistic.           331 

One way to further evaluate the evolution of the detected clusters is to relax the statistical 332 

significance required (i.e. p <0.05) and rerun the analysis at numerous spatial and temporal 333 

scales.  As a result, we can identify locations that may become significant in a few days or a 334 

week’s time but is beyond the scope of this exploratory paper.  Furthermore, the incidence rates 335 

are not uniform across the U.S.  Population density, age groups, and state and local mitigation 336 

measures will influence COVID-19 transmission and the magnitude of current and newly 337 

detected space-time clusters. 338 
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 Healthcare facilities and resources will continue to be tested as more cases are suspected 339 

and confirmed with increases in testing (Heymann and Shindo 2020; Yee et al. 2020).  Isolation 340 

measures and intensive contact tracing can successfully control COVID-19 outbreaks and reduce 341 

the burden facing hospitals and healthcare providers (Hellewell et al. 2020).  Enhanced hygiene 342 

and stricter social distancing measures are required to reduce SARS-CoV-2 circulation, 343 

especially when community transmission is detected (Dalton et al. 2020).  Availability of public 344 

datasets are also critical to increase surveillance efforts across the globe and corresponding areas 345 

facing substantial increases in transmission (Sun et al. 2020).  Confirmed case counts are not 346 

enough to understand the true magnitude of the COVID-19 pandemic.  Compiling datasets that 347 

include suspected, probable, and negative test counts can substantially improve surveillance 348 

efforts and our understanding of COVID-19 transmission dynamics (Lipsitch et al. 2020).    349 

Despite the strengths of our study, there are limitations worth mentioning.  First, there are 350 

many counties that were included in the clusters that did not contain any reported cases of 351 

COVID-19; however, this is due to the scanning process (an artifact of the statistic) and is 352 

circumvented by reporting the relative risk for the locations that belong to each cluster.  Second, 353 

the case data only include confirmed cases and it is important to highlight that suspected and 354 

probable cases are not considered due to unavailability and uncertainty.  Therefore, the true 355 

magnitude of the COVID-19 pandemic and will not be known for some time.  Third, more local-356 

level surveillance and studies are required to understand the transmission dynamics of the current 357 

and future emerging clusters; as SaTScan is an exploratory statistic.  Fourth, COVID-19 is more 358 

severe for the elderly and those with preexisting medical conditions.  Future studies can 359 

implement case/control cluster techniques with death and case counts (e.g. space-time Bernoulli 360 

models), while simultaneously adjusting for age and other relevant covariates.  It is also possible 361 
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to adjust for younger age groups to examine if mitigation guidelines have been successful in any 362 

way.  Finally, this study utilized COVID-19 case data up until March 27th, 2020.  Therefore, the 363 

magnitude and number of emerging clusters in our county-level analysis is likely much higher as 364 

cases continue to increase across the U.S.     365 

5. Conclusion 366 

 367 

We utilized publicly available case data from Johns Hopkins University's Center for 368 

Systems Science and Engineering to detect emerging space-time clusters of COVID-19 at the 369 

county level in the United States for two separate time periods.  We suggest that the counties 370 

belonging to emerging clusters should be prioritized when allocating resources and 371 

implementing various quarantine and isolation measures to slow viral transmission.  COVID-19 372 

and general infectious disease surveillance can benefit from our prospective approach by 373 

monitoring outbreaks as they happen as new data becomes available.  We emphasize the 374 

importance of focusing surveillance on emerging and active clusters during epidemics, 375 

essentially dismissing previous clusters that do not threaten public health that would appear in a 376 

retrospective analysis.  Furthermore, data sharing and availability is crucial and allows a variety 377 

of researchers to contribute to our knowledge of COVID-19 and epidemiology, in general.  378 

Geographers can play a vital role in mitigating disease transmission, and this study is one 379 

example of the plethora of methods that can be implemented in a limited timeframe to effectively 380 

inform public health officials and decision-makers about spatial and space-time transmission 381 

dynamics.          382 

 383 

 384 

 385 

 386 

 387 
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