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A spatial autologistic model to predict the presence of arsenic in private wells across 1 

Gaston County, North Carolina using geology, well-depth, and pH 2 

 3 

 4 

Abstract 5 

Chronic exposure to arsenic-contaminated drinking water is detrimental to human health. 6 

We develop an autologistic regression model to evaluate if the geology, pH, and well 7 

depth can improve our ability to predict the presence of arsenic at and above detectable 8 

levels (≥ 5 µg/L) found in private wells. We use arsenic samples measured in private well 9 

water across Gaston County, North Carolina, from 2011 to 2017. We use kriging to map 10 

the probability of arsenic at detectable levels across Gaston County. Arsenic at detectable 11 

levels was reported at 78 private wells and the median pH for all the samples was 7.1. 12 

Our spatial autologistic model suggests that arsenic at detectable levels is positively 13 

associated with pH. In addition, private wells set in Mica schist (ꞒZms) were associated 14 

with arsenic, suggesting a local-scale geologic source influence of arsenic in the county. 15 

Our kriging map shows that the northwestern section of the county has more than a 50 16 

percent probability to have arsenic at detectable levels. In conclusion, the results of our 17 

model provide evidence to warrant testing of wells in the Mica schist unit, and those 18 

using wells with higher arsenic levels could take action to reduce their risk. The map of 19 

probability of arsenic at and above detectable levels can be used to implement cost-20 

effective targeted interventions.  21 
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1. Background and Rationale 26 

Chronic exposure to elevated arsenic levels (>10 µg/L) in drinking water has been 27 

associated with several types of cancers including prostate (Benbrahim-Tallaa and 28 

Waalkes 2008), lung (Heck et al. 2009; Dauphiné et al. 2013), bladder (Steinmaus et al. 29 

2003), kidney (Yuan et al. 2010), and skin (Karagas et al. 2015). Recent studies have 30 

suggested that even low levels of arsenic (<10 µg/L) in drinking water may impact fetal 31 

development (Bloom et al. 2016; Almberg et al. 2017), increase odds of diabetes 32 

(Mahram et al. 2013), and cause heart diseases (Bräuner et al. 2014; James et al. 2015).  33 

In the United States (U.S) alone, 2.1 million people out of 44.1 million Americans 34 

are relying on private wells for water consumption, and do so at unsafe arsenic 35 

concentration levels above the public drinking water standard (10 µg/L) set by the U.S. 36 

Environmental Protection Agency (USEPA) (Ayotte et al. 2017). Yet, private wells are 37 

not regulated in the U.S (MacDonald Gibson and Pieper 2017). In Gaston County, North 38 

Carolina (the focus of our study, Fig 1), nearly 42% of the residents rely on private well 39 

water (Centers for Disease Control and Prevention (CDC) 2019). The accurate prediction 40 

of the spatial variation of arsenic in groundwater is critical to water supply management. 41 

Arsenic has been found at elevated levels in groundwater aquifers across North 42 

Carolina, US (Sanders et al. 2012), China (He et al. 2020a), Bangladesh (Hossain and 43 

Sivakumar 2006), Nepal (Gurung et al. 2005) and many other countries. He et al. (2020b) 44 

determined that elevated arsenic levels in groundwater in Datong Basin, China was 45 

associated with geological and climatic conditions characterized by active water–rock 46 

interactions, strong evaporation, and low groundwater flow rate. In North Carolina, some 47 

studies have underlined possible associations between elevated arsenic concentrations 48 
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and metavolcanic or metavolcaniclastic rocks (Pippin 2005; Harden et al. 2009), and 49 

metamorphosed clastic sedimentary rocks (Chapman et al. 2013). Reid et al. (2005) have 50 

suggested that the occurrence of arsenic in groundwater in the Piedmont of North 51 

Carolina could be related to fracture coatings in iron-manganese filled borehole cores 52 

from oxidized zones. The northwestern part of Gaston County, North Carolina (Fig 1) is 53 

within the area described as the physiographic and general geologic Piedmont of North 54 

Carolina. Chapman et al. (2013) have suggested that elevated arsenic concentrations in 55 

groundwater from rock units are positively correlated with pH of 7.2 or greater in the 56 

Piedmont of North Carolina. At a high pH, the formation of soluble ions can increase 57 

arsenic mobilization through desorption processes (Ayotte et al. 2003; Ayotte et al. 58 

2006).  59 

Most private wells in the Piedmont of North Carolina obtain water by drilling into 60 

bedrock, but a few wells tap water from the regolith at shallow depth (Daniel and Dahlen 61 

2002). Two studies have examined the relationship between arsenic concentration and 62 

well depth in bedrock aquifers in the Piedmont of North Carolina. Kim et al. (2011) 63 

found associations between elevated arsenic levels and deep wells within welded tuffs 64 

and quartz units that were close to the transition zones between primarily pyroclastic and 65 

primarily volcaniclastic sedimentary rocks. Chapman et al. (2013) found that arsenic 66 

concentrations in crystalline lithologies were positively correlated with well depth. 67 

However, to date there is no predictive model of the presence of arsenic in Gaston 68 

County, even though the county is ranked among the top counties in North Carolina, with 69 

the most private wells with arsenic concentrations exceeding the United States EPA 70 

drinking water standards (Sanders et al. 2012). The complexity and spatial distribution of 71 
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geologic formations make it difficult to assume that arsenic concentration would be 72 

evenly distributed in the county.  73 

Spatial modeling and geostatistics have received considerable attention for the 74 

prediction of arsenic in groundwater (Gaus et al. 2003; Goovaerts et al. 2005; Meliker et 75 

al. 2008; Kim et al. 2011; Dummer et al. 2015). When most of the data contain arsenic 76 

values that are reported as below the limit, researchers have relied on geostatistical 77 

techniques such as indicator kriging to estimate the occurrence of arsenic (Goovaerts et 78 

al. 2005; Lee et al. 2008; Goovaerts 2009; Hassan and Atkins 2011; Antunes and 79 

Albuquerque 2013), yet these approaches typically do not incorporate predictor variables. 80 

Some studies have used logistic regression with various predictors (geologic and 81 

anthropogenic sources of arsenic, geochemical processes, hydrogeologic, and land-use 82 

factors) to model the occurrence of arsenic ≥ 5 µg/L  (Ayotte et al. 2006; Bretzler et al. 83 

2017). The ordinary logistic regression is based on the assumption that the relationship 84 

between the presence of arsenic and potential confounding factors would not change 85 

across a region. However, spatial autocorrelation, defined as a measure of the similarity 86 

in values for nearby observations (Griffith 1987), is frequently present in environmental 87 

data. For example, there are different geologic regions in Gaston County, and samples 88 

taken from those distinct regions may exhibit strong similarities, violating the assumption 89 

of spatial stationarity. Therefore, ignoring spatial effects in ordinary logistic regression 90 

could result in a biased and under-performing model (Bo et al. 2014). Autologistic 91 

regression could be used to alleviate this problem (Griffith 2004; Dormann 2007; Fu et 92 

al. 2013; Bo et al. 2014; Seeley et al. 2019). 93 
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 The autologistic regression is a spatial model that incorporates a spatial 94 

autocorrelation (autocovariate) variable into a logistic regression model to obtain robust 95 

inference (Griffith 2004; Dormann 2007; Fu et al. 2013; Bo et al. 2014; Liu et al. 2018). 96 

The autocovariate variable introduced in an autologistic regression reflects the first law of 97 

geography that near things are more related than distant things (Tobler 1970; Tobler 98 

1979; Miller 2004). In this study, we assumed that the probability of arsenic occurrence 99 

in a private well is higher if it is also present in nearby private wells. The autologistic 100 

regression has gained attention in ecological studies (Wu and Huffer 1997; Dormann 101 

2007; Tsuyuki 2008), transportation research (Liu and Sharma 2019), but have not been 102 

applied to model the occurrence of arsenic. 103 

We develop a spatial autologistic regression model to evaluate if the geology, pH, 104 

and well depth can improve our ability to predict the presence of arsenic at and above 105 

detectable levels (≥5 µg/L) in private wells. We used this threshold because all arsenic 106 

concentration data in our study used EPA method 200.8 that has a detection limit of 5 107 

µg/L (USEPA 1994; North Carolina Department of Health and Human Services 2020). 108 

Also, we used this threshold because lifetime exposure to even relatively low arsenic 109 

concentration can have adverse health effects. 110 

2. Study Area and Geologic Setting 111 

Gaston County, North Carolina (364 mi² or 942.756km²) is a fast-growing county 112 

of nearly 225,000 residents (2019) in the South-Central Piedmont section of North 113 

Carolina, with the city of Gastonia serving as the county seat (35.2621° N, 81.1873° W). 114 

The county is bounded on the east by the Catawba River and Mecklenburg County, on 115 

the west by Cleveland County, on the north by Lincoln County and on the south by York 116 
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County, South Carolina. Gaston County enjoys a temperate climate with moderate 117 

temperature variations and humidity.  The topography of the County is gently rolling to 118 

hilly, with several pronounced ridges. Elevations above sea level range from 587 feet 119 

(179 meters) in the southeast corner to 1,705 feet (520 meters). 120 

Gaston County, North Carolina, is composed of Inner Piedmont (1), Kings 121 

Mountain (2), and Charlotte (3) geologic belts (Fig 1) (North Carolina Department of 122 

Environmental Quality 2020). In contrast with the historic terminology of (east to west) 123 

Charlotte belt, Kings Mountain belt, and Inner Piedmont, Gaston County sits astride the 124 

Central Piedmont suture zone (a complex tectonic boundary) that joins the Carolina 125 

terrane to the Cat Square terrane in the Inner Piedmont (Huebner et al. 2017). Huebner et 126 

al. (2017) described the Cat Square terrane as a remnant of an early Paleozoic ocean 127 

basin.  128 

<Fig 1 around here> 129 

 130 

Fig 1 Spatial distribution of arsenic concentrations in well water samples in Gaston 131 

County, North Carolina. (Geologic data source: North Carolina Department of 132 

Environmental Quality, 2020) 133 

 134 

The geologic belts have bedrock of varying ages and formations. A geologic 135 

formation is a fundamental unit in the classification of rocks based on similar 136 

characteristics in mineral composition, grain size, and color (Carter et al. 2002). The 137 

geologic formations in the Inner Piedmont consist of amphibolite and biotite gneiss, 138 

Cherryville granite, metamorphosed granitic rock, and mica schist (Fig 1). The mica 139 

schist formation consists of both ꞒZs and ꞒZms. ꞒZs is a “white-mica schist” that, 140 

depending on locality, contains layers of biotite gneiss, quartz-mica schist, micaceous 141 

quartzite, and rare amphibolite. In Gaston County, much of the ꞒZms unit appears to be a 142 
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country-rock to the Mississippian Cherryville Granite (Mc in Fig 1) (Goldsmith et al. 143 

1988). Following the interpretation of  Goldsmith et al. (1988), the ꞒZms unit in this 144 

study forms a suite of mainly stratified groups of similar age and thus related source 145 

environments. The Cherryville Granite is a late- to post-metamorphic two-mica granite 146 

that is associated with elevated radon (Waldron et al. 2007; Werner et al. 2009). 147 

The geologic formations in the Charlotte belt consist of granitic rock, 148 

metamorphosed granitic rock, metamorphosed quartz diorite, gabbro of concord plutonic 149 

suite, and felsic metavolcanic rock. The Kings Mountain belt consists of metamorphic 150 

rocks in the Battleground Formation, Blacksburg Formation, foliated to massive granitic 151 

rock, Cherryville granite, and metamorphosed quartz diorite (Goldsmith et al. 1988). The 152 

Battleground Formation consists of protoliths formed during the Late Proterozoic and 153 

later metamorphosed to form a combination of quartz-sericite schist with metavolcanic 154 

rocks, quartz-pebble metaconglomerate, and kyanite-sillimanite quartzite. The 155 

Blacksburg Formation consists of sericite schist with graphite, phyllite, amphibolite, and 156 

calc-silicate rocks formed in the late Proterozoic-Cambrian.  157 

3.  Material and Methods     158 

3.1. Arsenic Concentration in Well Water 159 

Arsenic data for private wells was obtained from the Gaston County Department 160 

of Health and Human Services (GC-DHHS) for 2011 through 2017. The data also 161 

contained information on the permit number, owner’s name, residential address, 162 

collection date, sampling point, pH, and other inorganic chemicals. We used a GIS to 163 

geocode residential addresses to determine their geographic coordinates (Owusu et al. 164 

2017). Some of the records represent repeated sampling of the same well – e.g., when 165 
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water samples are taken from the kitchen sink and at the well. We therefore retained only 166 

the maximum recorded value from the location with the multiple tests to reflect potential 167 

groundwater concentration, which reduced our samples to 1082. This method has been 168 

used in similar studies to preserve the number of samples above the reporting limit 169 

(Ayotte et al. 2006; Kim et al. 2011; Gross and Low 2013; Ayotte et al. 2017; 170 

VanDerwerker et al. 2018). We also excluded 92 records because the pH values were 171 

missing, which reduced our final samples set to 990. 172 

3.2. Estimating Well Depth and Geologic Information 173 

 We obtained a digital copy of Gaston County’s private wells permit data from 174 

GC-DHHS to get well depth information to associate with the arsenic data (Fig 2). The 175 

well depth does not accurately reflect the depth of the water sample, because geologic 176 

changes, groundwater flow, weather cycles and precipitation patterns can affect the level 177 

of the water table (United States Geological Survey 2020). In this study, we relied on the 178 

well depth because the actual depth of the water sample was not available.  179 

Out of the 990 samples, we were able to merge 509 arsenic samples to the permit 180 

data using either the permit numbers, residential address, or name to extract the well 181 

depth information (Fig 2). For the remaining 481 sampled wells that were not merged to 182 

the permit data due to missing data, we imputed the well depth information using an 183 

inverse distance weighting (IDW), an interpolation technique (Fig 2). The IDW surface 184 

was developed from 7837 well depths in the permit data.  185 

Ethan and Xiao-Ming (2018) have suggested that the depth from the regolith to 186 

the bedrock aquifer frequently tapped by shallow wells ranges from 0 to 150 feet in 187 

Orange County, which is also in the Piedmont region. We assumed this could also be the 188 
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case in Gaston County and classified the well depths into three groups; 1) shallow (≤ 150 189 

feet), 2) moderate (151 – 300 feet), and deep (≥ 301 feet) evaluate the differences in risk 190 

of arsenic in private wells. It was appropriate to categorize well depth into three groups 191 

(shallow, moderate, and deep) because the relationship between probability of arsenic 192 

concentration ≥ 5 µg/L and well depth may not be linear due to differences in well 193 

construction. The well depth groups can therefore help to understand the real 194 

relationships and differences in the probability of arsenic concentration ≥ 5 µg/L 195 

considering that the characteristics of the sampled private wells are not provided in the 196 

data. 197 

<Fig. 2 around here> 198 

Fig 2 Workflow to estimate well depth for private wells 199 

 200 

We obtained the geologic data for Gaston County from the North Carolina online 201 

GIS Portal. The NC Department of Environmental Quality Division of Land Resources, 202 

NC Geological Survey, and NC Center for GIS developed the digital data at a scale of 1: 203 

250,000 miles. We spatially joined the sampled arsenic locations to the geologic data 204 

using a GIS.  205 

3.3. Development of the Autologistic Regression Model 206 

Similar to Ayotte et al. (2006), we converted the arsenic concentration to 1 if ≥ 5 207 

µg/L and 0 if < 5 µg/L because 912 samples were marked as ‘< 5 µg/L’ and 78 samples 208 

were reported arsenic concentrations. Because of the small number of samples with 209 

arsenic concentration ≥ 5 µg/L, we did not split the datasets into train and validation data. 210 

Instead, we used all the data in the model development to allow for a better model. We 211 
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used an autologistic regression model to predict locations where the presence of arsenic 212 

concentration is ≥ 5 µg/L in private wells. The assumption for the autologistic regression 213 

is that relationships between the presence of arsenic and the explanatory factors are 214 

similar for nearby private wells than distant wells. We estimated the probability of 215 

elevated arsenic concentration at a location i using the autologistic function (Tsuyuki 216 

2008). 217 

𝑝𝑖 =
1

1 + 𝑒𝑥𝑝[−(𝛽0 + 𝛽1𝑥1,𝑖+. . 𝛽𝑛𝑥𝑛,𝑖 + 𝐶(𝑎𝑢𝑡𝑜 𝑐𝑜𝑣𝑖))]
                                           (1)   218 

i is the location of the private well, 𝑥1 … 𝑥𝑛 are the covariates,  𝛽0, 𝛽1, 𝛽𝑛 𝑎𝑛𝑑 𝐶  are the 219 

estimated coefficients. The introduction of the autocovariate variable in the autologistic 220 

regression penalizes the regression constant and reduces the contribution of the residuals 221 

to produce robust predictions (Griffith 2004; Dormann 2007; Fu et al. 2013; Bo et al. 222 

2014). The autocovariate variable for a location i is calculated using Equation 2.  223 

𝐴𝑢𝑡𝑜 𝑐𝑜𝑣𝑖 =
∑ 𝑤𝑖𝑗�̂�𝑗 

𝑘
𝑗=1

∑ 𝑤𝑖𝑗
𝑘
𝑗=1

                                                                                             (2)                                                                                       224 

The autocovariate variable (𝑎𝑢𝑡𝑜 𝑐𝑜𝑣) is a weighted average of the probabilities of 225 

arsenic concentration ≥ 5 µg/L of a set of nearby private wells j (𝑗 = 1 … 𝑘) to the private 226 

well at i. The weight between private wells i and j is 𝑤𝑖𝑗 =  
1

𝑑𝑖𝑗
, where 𝑑𝑖𝑗 is the 227 

Euclidean distance between private wells i and j, and �̂�𝑗 probability of arsenic 228 

concentration ≥ 5 µg/L at j. We determined that the minimum Euclidean distance 229 

(bandwidth) at which no private well had zero neighbors was 1976 meters and used this 230 

value (𝑑𝑖𝑗) in the analysis.  231 

We used the “spatialEco” package in R/R Studio version 3.6 (Evans and Ram 232 

2020) to implement the spatial autologistic regression model. We assessed the overall 233 
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model performance by computing the receiver operating characteristic (ROC) area under 234 

curve (AUC) value. This value is a ratio of the true positive rate to the false positive rate, 235 

integrated over a range of probability thresholds, and indicates model fit (Hamel 2009). 236 

AUC values range from 0.5 to 1; where 0.5 means that the model is no better than 237 

predicting the outcome by a random chance, 0.7 is a good model; 0.8 is a robust model, 238 

and 1 is a perfect model (Hamel 2009). We also report the percentage of the correctly 239 

classified and the Chi-Square test for goodness of model fit.  240 

3.4. Development of an Interpolated Probability Surface 241 

Our model results return the probability of arsenic concentrations ≥ 5 µg/L that 242 

we mapped to reveal spatial patterns throughout Gaston County, along with the residuals 243 

using Kriging. Kriging is an interpolation method to estimate the values of a variable at 244 

unsampled locations using observations from known sites (Hengl 2009; Li and Heap 245 

2011; Li and Heap 2014). The interpolation surface allows for delineating areas with a 246 

high probability of arsenic concentration ≥ 5 µg/L in well water in Gaston County. The 247 

kriging interpolation was developed with the Gstat R statistical package (Pebesma et al. 248 

2019). 249 

4. Results 250 

4.1. Distribution of Arsenic Concentration 251 

Out of the 990 arsenic measurements, a total of 912 samples contained arsenic 252 

concentrations < 5 µg/L; 78 samples were ≥ 5 µg/L. Out of 78 samples with detectable 253 

levels of arsenic (≥ 5 µg/), 42 samples had concentrations from 5 to 6 µg/L (Fig 3). The 254 

maximum reported arsenic concentration in well water was 81 µg/L in the Kings 255 
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mountain geological belt (Fig 1). The pH in well water samples ranged from 5.1 to 9.7. 256 

The median pH in well water samples was 7.1.  Sampled wells that contained arsenic 257 

concentrations ≥ 5 µg/L had an average pH of 7.3, while those at lower levels (< 5 µg/L) 258 

had a pH of 7.1. The minimum and maximum well depth were 30 ft and 1205 ft 259 

respectively. The average prediction error for the IDW was -3.1 ft and the RMSE of 125 260 

ft. 261 

<Fig. 3 around> 262 

Fig 3 Distribution of arsenic for the 78 samples at and above detectable levels (5 µg/L) 263 

(samples marked as ‘< 5 µg/L’ in the data had a frequency of 912- not included in the 264 

histogram) 265 

 266 

As shown in Fig 1, the spatial distribution of the presence of arsenic and the 267 

geologic units in Gaston County suggest that most of the samples with arsenic 268 

concentration ≥ 5 µg/L were in the northwestern part of the county, which is an area 269 

within the ꞒZms - Mica schist geologic unit. Specifically, within the ꞒZms - Mica schist 270 

unit, 28% (n = 26) of the samples in that unit exhibited arsenic concentration ≥ 5 µg/L 271 

(Table 1). Noteworthy, 15.1% (n = 8) of samples with arsenic concentration ≥ 5 µg/L 272 

were found in private wells located on the Mc - Cherryville Granite.  273 

Table 1 Samples with arsenic concentration (≥ 5 µg/L) for geologic units in Gaston 274 

County, North Carolina 275 

Geologic unit Total (N) 

(n) 

(≥ 5 µg/L) 

% 

(≥ 5 µg/L) 

ꞒZab - Amphibolite and biotite gneiss 7 1 14.3 

ꞒZbg - Mica schist 4 0 0 

ꞒZbl - Blacksburg Formation 57 5 8.8 

ꞒZfv - Felsic metavolcanic rock 58 3 5.2 

ꞒZg - Metamorphosed granitic rock 39 2 5.1 

ꞒZms - Mica schist 93 26 28 

DOg - Granitic rock 52 4 7.7 

Mc - Cherryville Granite 53 8 15.1 
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OꞒg - Metamorphosed granitic rock 2 0 0 

PPmg - Foliated to massive granitic rock 199 13 6.5 

PzZq - Metamorphosed quartz diorite 279 10 3.6 

Zbt - Battleground Formation 147 6 4.1 

 276 

We summarized the number and percent of samples with arsenic concentration ≥ 277 

5 µg/L for the different geologic belts in Gaston County (Table 2). Overall, 22.1% (n = 278 

34) of the sampled wells in the Inner Piedmont belt had arsenic concentrations ≥ 5 µg/L. 279 

We found 6.3% (n = 27) of the sampled wells in the Kings Mountain belt had arsenic 280 

concentration ≥ 5 µg/L. The Charlotte belt had 4.2% (n = 17) sampled wells with arsenic 281 

concentration ≥ 5 µg/L, respectively. 282 

Table 2 Samples with arsenic concentration (≥ 5 µg/L) for geologic belts in Gaston 283 

County, North Carolina 284 

Geologic belt Total (N) 

(n) 

(≥ 5 µg/L)   

% 

(≥ 5 µg/L) 

Charlotte  409 17 4.2 

Inner Piedmont 154 34 22.1 

Kings Mountain  427 27 6.3 

 285 

We also examined the number and percent of samples with ≥ 5 µg/L arsenic 286 

concentration by different well depths (Table 3). We found that 5.7% (n = 7) of the 287 

sampled wells with depth ≤ 150 feet contained arsenic concentrations ≥ 5 µg/L. Also, 288 

6.9% (n = 40) of the sampled wells with depth from 151 to 300 feet contained arsenic 289 

concentrations ≥ 5 µg/L. Sampled wells with depth ≥ 301 feet had 10.6% (n = 32) with 290 

arsenic concentration ≥ 5 µg/L. 291 

Table 3 Samples with arsenic concentration (≥ 5 µg/L) for different well depths in 292 

Gaston County, North Carolina 293 

Depth (feet) Total (N) 

(n) 

(≥ 5 µg/L)   

% 

(≥ 5 µg/L) 
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≤ 150 105 6 5.7 

151 to 300 582 40 6.9 

≥ 301 303 32 10.6 

 294 

4.2. Model Results for Arsenic Concentration ≥ 5 µg/L 295 

The results of the autologistic regression model adjusted for confounding factors 296 

suggests that the ꞒZms - Mica schist and pH are associated with the presence of arsenic ( 297 

≥ 5 µg/L) in well water (Table 4). The presence of arsenic ≥ 5 µg/L is significantly 298 

associated with private wells located in ꞒZms - Mica schist formation, (OR = 2.99, with 299 

95% confidence interval: (1.37 - 6.52).  When adjusted for potential confounding 300 

variables, the odds of arsenic > 5 µg/L in wells on ꞒZms - Mica schist was 2.99 times 301 

that of other wells. We found that one unit increase in pH in well water, the log odds of 302 

arsenic concentrations ≥ 5 µg/L increased by 0.75, when adjusted for other confounding 303 

factors. An OR= 2.11 with 95% CI: (1.31 – 3.38), indicated that arsenic concentration 304 

significantly increased with pH levels. The positive autocovariate coefficient (C= 2.80) 305 

indicates an inherent spatial effect in the model residuals. The spatial effect in the model 306 

increase or decrease by a factor of 2.80 in the regression. This residual spatial 307 

autocorrelation term (autocovariate) in the spatial autologistic regression reduced the 308 

spatial bias in the residual errors to produce robust estimates.  309 

Table 4 Results of significant (p < 0.05) variables in the spatial autologistic regression 310 

model. Positive coefficient suggests an increased probability of arsenic ≥ 5 µg/L 311 

Variable Coefficient (β) Odds Ratio (OR) 95% CI of OR 

ꞒZms - Mica schist 1.09 2.99 1.37 - 6.52 

pH 0.75 2.11 1.31 - 3.38 

Autocovariate constant (C)  2.80 16.46 4.58 – 59.15 

 312 
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The model correctly classified 90.1% of the arsenic concentrations ≥ 5 µg/L 313 

(sensitivity) and 93.1% of the arsenic concentration < 5 µg/L (specificity). Overall, our 314 

model classification accuracy was 93.0%. The chi-square goodness of fit was significant 315 

(p < 0.05), which indicates that the model was better than a null model. The model AUC 316 

was 0.8, which indicates the model had classification capability with accuracy 80% of the 317 

time in predicting the presence of arsenic concentrations ≥ 5 µg/L across Gaston County, 318 

North Carolina. 319 

4.3. Spatial Autocorrelation (Autocovariate) of Arsenic Concentration ≥ 5 µg/L 320 

 The spatial distribution of the autocovariate variable represents the residual spatial 321 

autocorrelation in the autologistic regression model. The values indicate the strength of 322 

the correlation between with arsenic concentrations ≥ 5 µg/L as a function of the distance 323 

separating the samples. These values range from -1 to 1, with 1 indicating areas with 324 

strong positive autocorrelation (spatial clustering), -1 indicating areas with strong 325 

negative autocorrelation, and 0 indicating a random spatial pattern with no spatial 326 

autocorrelation. As shown in Fig 4, areas with negative values can be observed in the 327 

central part of the county (dispersion of arsenic concentrations ≥ 5 µg/L), and a large 328 

proportion of the county with zero values (random spatial pattern). We observed areas 329 

with positive spatial autocorrelation ≥ 0.41 in the northwest, northeast, and southeast 330 

areas in the county indicating samples with arsenic concentrations ≥ 5 µg/L are near each 331 

other. Having many samples with arsenic concentrations ≥ 5 µg/L near each other in the 332 

northwest, northeast, and southeast areas in the county may suggest a possible common 333 

contamination source is within the area. These areas may have a poor groundwater 334 

quality compared to other parts of the county with spatial autocorrelation <0.41. The 335 
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areas with spatial autocorrelation ≥ 0.41 are consistent with the pattern in Fig 1 showing 336 

locations with arsenic concentrations ≥ 5 µg/L particularly in the northwest of the county.  337 

<Fig. 4 around here> 338 

Fig 4 Distribution of the spatial autocorrelation (autocovariate variable) 339 

 340 

4.4. Spatial Probability of Arsenic Concentration ≥ 5 µg/L 341 

Using the model, we generated a kriging map of the probability of arsenic 342 

concentrations ≥ 5 µg/L (Fig 5). A probability higher than 0.5 indicated that well water 343 

was predicted to have arsenic concentration ≥ 5 µg/L, considering the combined effects 344 

of geology, pH, and well depth. Although the map shows that most places in the county 345 

have a low likelihood of arsenic concentration ≥ 5 µg/L, we can observe a high 346 

probability (> 0.5) in the northwest section of the county (Fig 5). This area covers about 347 

8.4 km2, and our model predicts that wells contained within the area are highly 348 

susceptible to arsenic concentration ≥ 5 µg/L. 349 

<Fig. 5 around here> 350 

Fig 5 Spatial distribution of the probability of arsenic concentration ≥ 5 µg/L in private 351 

wells 352 

 353 

5. Discussion 354 

Our results suggest the presence of arsenic ≥ 5 µg/L concentration in well water is 355 

related to the geologic formation and pH. We found 26.5% of the sampled wells in the 356 

Mica schist (ꞒZms) formation contained arsenic concentrations ≥ 5 µg/L. This high 357 

percentage of samples with arsenic concentration ≥ 5 µg/L supports our results of the 358 

spatial autologistic regression model; private wells located in Mica schist (ꞒZms) were 359 
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predicted to have a threefold likelihood of having arsenic concentrations ≥ 5 µg/L after 360 

controlling for other confounding factors. Mica schist (ꞒZms) formation consists of 361 

metamorphic rocks including quartz schist, micaceous quartzite, phyllite, and calc-silicate 362 

rock (Goldsmith et al. 1988; North Carolina Department of Environmental Quality 2020).  363 

Previous studies have identified high arsenic levels in these rocks with similar 364 

assemblages of silicate rock-forming minerals (Smedley and Kinniburgh 2002; Garelick 365 

et al. 2009). The Mica schist (ꞒZms ) formation is also part of the Inner Piedmont belt of 366 

North Carolina, a region that has been found to contain elevated arsenic concentrations (≥ 367 

10 µg/L)  in groundwater supplies due to geologic sources (Pippin 2005; Reid et al. 2005; 368 

Harden et al. 2009; Chapman et al. 2013). Our study corroborates these findings.  369 

The 8.4 km2 area with a probability ≥ 0.5 for the presence of arsenic concentration 370 

≥ 5 µg/L (Fig 5), coincides with the Mica schist (ꞒZms ) formation. Further, we observed 371 

a positive spatial autocorrelation ≥ 0.41 in the northwest (Fig 4) to support evidence of a 372 

possible common contamination source related to the geology in the area.From the GIS 373 

permit database, we found that there were 75 private wells within that area, and 12 were 374 

sampled during this study period. Out of the 12 sampled private wells in the area, 75% 375 

(n=9) contained arsenic concentration ≥ 5 µg/L. The average arsenic concentration for the 376 

9 sampled private wells was 16 µg/L. Given that lifetime exposure to even lower levels 377 

of arsenic concentration can be detrimental to human health (Mahram et al. 2013; 378 

Bräuner et al. 2014; James et al. 2015; Bloom et al. 2016; Almberg et al. 2017), well 379 

users in this area should be encouraged to monitor well water quality. Future 380 

epidemiological studies are needed to determine whether residents have arsenic-related 381 

health outcomes, including cancer. 382 



18 
 

We found evidence that sampled wells with arsenic concentration ≥ 5 µg/L in the 383 

water had an average pH of 7.3, which may indicate alkaline conditions that could 384 

increase arsenic mobilization in well water. Also, our model results indicated a positive 385 

association between pH and increased probability of arsenic ≥ 5 µg/L. These findings 386 

suggest that arsenic concentration ≥ 5 µg/L occur on higher pH (≥ 7.3). The potential for 387 

arsenic mobilization to occur as a result of ion exchange-related increases in pH could be 388 

due to interactions between geologic minerals and aquifer waters (Ayotte et al. 2003; 389 

Ayotte et al. 2006). The pH values greater than 7.2 have closely been related to high 390 

arsenic concentrations in groundwater aquifers in the Piedmont of North Carolina 391 

(Chapman et al. 2013). Our findings corroborate these studies. 392 

Our model results indicate no statistically significant relationship between the 393 

presence of arsenic and well depth after adjusting for other confounding factors. 394 

Similarly, we found no significant relationship between well depth and probability of 395 

arsenic concentration ≥ 5 µg/L when using data for the 509 samples with known well 396 

depth. Previous studies have found an association between deeper wells and elevated 397 

arsenic levels (Sun 2004; Focazio et al. 2006; Kim et al. 2011; Chapman et al. 2013). 398 

Yet, our model results did not corroborate findings from these studies. We found 10.6% 399 

of sampled wells with depth ≥ 301 feet had arsenic concentration ≥ 5 µg/L. Subsequently, 400 

7 out of 12 sampled wells in the northwestern area with an estimated 50% chance of 401 

having arsenic concentration ≥ 5 µg/L had well depth ≥ 301 feet. Given the small sample 402 

size in the most affected area, we recommend that future studies obtain more samples to 403 

determine whether there could be a relationship between arsenic concentration ≥ 5 µg/L 404 

and deeper wells.  405 
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We used publicly available data in the analysis. Thus, our approach can be 406 

applied to other areas where geologic data is available and with existing data on private 407 

wells' water quality. Also, we used a spatial autologistic regression model rather than the 408 

commonly used ordinary logistic regression model because our dependent and predictor 409 

variables were inherently spatial. The spatial autologistic regression model was used 410 

because it adjusts for spatial autocorrelation in prediction residuals due to spatial effects, 411 

which is not rectified in the non-spatial ordinary logistic regression (Tsuyuki 2008; Bo et 412 

al. 2014). A limitation of our study is that we imputed well depth information for 481 413 

sampled wells from an IDW interpolated surface of all wells in the county. Interpolated 414 

values may not reflect the actual well depth, but we selected this approach because 415 

excluding these samples would have reduced our sample size by 49 percent. This would 416 

have affected the model statistical power and reduced our ability to find spatial patterns 417 

of the probability of arsenic concentration ≥ 5 µg/L. If we ignored the wells with 418 

interpolated depth, we would have in fact removed 31 samples with arsenic concentration 419 

≥ 5 µg/L. Also, no significant relationship was found between the probability of arsenic 420 

concentration ≥ 5 µg/L and any of the geologic rocks from using the 509 samples with 421 

known well depth. Another weakness of our model is that we are not able to validate the 422 

results through field investigation and the number of samples that had arsenic 423 

concentration ≥ 5 µg/L was only 78 to split the data into training and testing during the 424 

model development. We recommend more sampling of arsenic data in the future could be 425 

useful in validating our results. 426 

Further, our model could be improved by the addition of other variables, 427 

including distance to potential arsenic sources (e.g., coal ash, landfills), geochemical, and 428 
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hydrogeological conditions. Also, a detailed geologic map such as that produced by 429 

Goldsmith et al. (1988), could allow for incorporating finer geologic information and 430 

improve the model. However, this map could not be used in this study because it was 431 

unavailable in a GIS usable format.  432 

6. Conclusions 433 

Out of 990 sampled wells, 78 contained arsenic concentration ≥ 5 µg/L, and the 434 

highest reported level was 81 µg/L. The pH of well water ranged between 5.1 to 9.7, and 435 

private wells with arsenic concentration ≥ 5 µg/L had an average pH of 7.3. The pH value 436 

of well water was positively associated with an increased probability of arsenic 437 

concentration ≥ 5 µg/L after controlling for confounding factors. Furthermore, the 438 

presence of arsenic ≥ 5 µg/L in well water was primarily related to private wells located 439 

on Mica schist (ꞒZms) formation after controlling for other confounding factors. 440 

 The model results can be used to explain questions related to “why,” “where,” 441 

and “what” factors are influencing arsenic occurrence at and above detectable levels. For 442 

example, the model results were utilized to investigate “where are the risk areas of 443 

arsenic at or above detectable levels?” To answer this question, kriging was used to 444 

estimate probabilities of arsenic at and above detectable levels at unsampled locations 445 

across Gaston County. From the kriging map, we identified an area in the northwestern 446 

part of Gaston County has a 50% chance of having arsenic at and above the detection 447 

limit. Further, we found a positive spatial autocorrelation ≥ 0.41 suggesting a spatial 448 

clustering of samples with arsenic concentration ≥ 5 µg/L in the northwest, northeast and 449 

southeast parts of the county which may suggest a possible common contamination 450 

source within these areas.  451 
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Our analysis further reveals that, the northwest area with spatial clustering arsenic 452 

concentration ≥ 5 µg/L and with a 50% chance of reporting elevated levels of arsenic 453 

coincided with the Mica schist (ꞒZms) formation. Our maps offer two relevant practical 454 

use cases - 1) private wells in the “hot spot” area can be targeted for interventions, and 2) 455 

the map can be shared with the community so well owners can take action to reduce their 456 

risk of drinking unsafe water. The model results improve our ability to predict the 457 

presence of arsenic because the area we identified as a hotspot coincide with the Mica 458 

schist and 9 out of the 12 samples in the area were at and above 5 µg/L. The model 459 

results provide evidence to warrant testing of wells for arsenic across Gaston County.   460 
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 705 
Fig 6 Spatial distribution of arsenic concentrations in well water samples in Gaston 706 

County, North Carolina. (Geologic data source: North Carolina Department of 707 

Environmental Quality, 2020) 708 

 709 

 710 

 711 

Fig 7 Workflow to estimate well depth for private wells  712 

 713 

 714 
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 715 
Fig 8 Distribution of arsenic for the 78 samples at and above detectable levels (5 µg/L) 716 

(samples marked as ‘< 5 µg/L’ in the data had a frequency of 912- not included in the 717 

histogram)  718 

 719 

 720 
Fig 9 Distribution of the spatial autocorrelation (autocovariate variable) 721 
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 723 
Fig 10 Spatial distribution of the probability of arsenic concentration ≥ 5 µg/L in private 724 

wells 725 
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 727 


