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Abstract

Novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2), is a pandemic with 1,420,299 confirmed cases and 85,992 total deaths within
the United States as of May 15th, 2020. As the number of cases continues to climb, detecting clusters
of COVID-19 is critical to alleviate the strain on our public health system through improved resource
allocation and decision-making. Here, we report on an analysis of daily case data at the county level
using the prospective spatial-temporal scan statistic. In previous work, we performed the analysis for
March 27th 2020 [1], and here we report updated results as of April 27th 2020, producing a new set of
“active” and emerging clusters present. Our analysis resulted in sixteen significant space-time clusters
of COVID-19 at the county level in the U.S. during the time span of March 22nd - April 27th. The space-
time pattern of significant clusters mirrors active and emerging disease hot-spots at the end of our study
period. The statistic can be rerun to support timely surveillance of COVID-19, as demonstrated here.

1 Introduction

Novel coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2). As of May 15th, 2020, a total of 4,483,864 confirmed cases and 303,825 deaths from COVID-
19 have been reported globally. With 1,420,299 cases and 85,992 deaths, the United States is currently most
affected by the disease globally [2]. Patients may exhibit symptoms like fever, shortness of breath, and cough
[3], but more severe cases can lead to pneumonia and death [4]. The elderly, as well as people with preexisting
conditions, are especially at risk of a severe outcome of COVID-19 [5].

Disease surveillance refers to systematic collection and analysis of data on disease outbreaks for guidance of
public health response, such as rapid testing, allocation of resources, or social distancing measures. It is thus an
essential component of health emergency work and allows for timely recommendations for countermeasures [6].
The space-time scan statistic [7] is a widely used disease surveillance technique, as it identifies the geographic
location, duration, strength and statistical significance of disease clusters. The statistic and its variants have
been applied in many different settings: detecting unusual increases of hospital visits in NYC [8], analyzing
the co-occurrence of Chikungunya and Dengue Fever in Colombia and Panama [9][10], identifying hot spots of
crime activity [11], clustering geotagged tweets [12], and many more1.

1For a comprehensive list of SatScan applications and methodological developments, see https://www.satscan.org/references.html
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The prospective space-time scan statistic [8] is suitable for continuous surveillance and stands in contrast to
its retrospective variant. It detects “active” or “emerging” clusters at the end of the study period while ignoring
past clusters that may no longer constitute a public health threat. The prospective space-time scan statistic can be
rerun as the phenomenon of interest unfolds, for tracking the development of existing clusters and for detecting
new ones. Applications include syndromic surveillance in NYC [13], an early detection system for West Nile
Virus [14], and lastly, COVID-19 in the United States as of March 27, 2020 [1].

Here, we report significant active clusters of COVID-19 in the contiguous United States during the time
period of January 22nd - April 27th, 2020, thereby extending and updating an earlier study that focused on
the time period of January 22nd - March 27th [1]. Our work contributes to surveillance efforts of COVID-19
by identifying areas of significantly elevated disease risk. It informs health authorities by providing guidance
on allocating resources for contact tracing, rapid testing, and social distancing policy. This short article is
structured as follows: Section 2 (Data and Methods) offers details on the COVID-19 case data, as well as
theoretical background of the prospective space-time scan statistic. Section 3 (Results) contains an overview of
the identified significant clusters. Section 4 (Discussion and Conclusions) summarizes strengths and weaknesses
of our approach and offers an outlook on current and future work.

2 Data and Methods

We collected case data from the COVID-19 Data Repository by the Center for Systems Science and Engineering
(CSSE) at Johns Hopkins University2. The repository is updated daily and contains case counts for the United
States at the county level. We gathered daily case counts for the contiguous United States during the time
period since the first confirmed case in the U.S. to the date of performing the analysis (January 22nd - to April
27th, 2020). In addition, we obtained 2018 ACS 5-year estimates of the total population of each county, which
we joined to the corresponding county polygons obtained from the U.S. Census. Therefore, we ignored cases
assigned to cruise ships “Diamond Princess” and “Grand Princess”, as well as cases that were assigned to states
rather than counties. As the data set contains cumulative case counts for each day of our study period (Figure
1), we subtracted the previous day’s count to obtain the number of new cases per day for each county.

We applied the prospective Poisson space-time scan statistic [8] to detect active clusters of COVID-19. The
space-time scan statistic identifies the most likely clusters from a set of cylindrical candidate clusters of varying
size and geographic location (county centroids are candidate locations). The base of the cylinder corresponds
to the circular spatial scanning window, whereas the height corresponds to the temporal window. We set the
maximum spatial and temporal scanning window size to include no more than 10% of the population at-risk
and 50% of the study period, respectively. We chose the minimum number of cases per cluster to 5 and the
minimum duration to 2 days. These parameter settings are consistent with our earlier efforts of identifying
clusters of COVID-19 [1]. The expected and observed numbers of cases are computed for each cylinder and
a maximum likelihood test is performed. The null hypothesis H0 states that risk within the cylinder is not
different from the outside, whereas the alternative hypothesis Ha states that risk inside the cylinder is elevated.
The number of expected cases µ is computed using Equation 1:

µ = p ∗ C
P

(1)

where p is the population inside the cylinder, C the total number of cases in the U.S., and P the total population
in the U.S.

2https://github.com/CSSEGISandData/COVID-19
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Figure 1: Cumulative number of COVID-19 cases in the contiguous United States between January 22nd and
April 27th, 2020.

A likelihood ratio test is used to identify clusters of elevated disease risk using Equation 2:

L(Z)

L0
=

(
nZ
µ(Z)

)nZ
(
N−nZ
N−µ(Z)

)N−nZ

(
N
µ(T )

)N (2)

where L(Z) is the likelihood function for candidate cylinder Z, L0 the likelihood function for H0; nz the
number of COVID-19 cases inside a cylinder; µ(Z) the expected number of cases in cylinder Z; N the number
of observed cases for the entire U.S. during the entire study period; and µ(T ) the total number of expected
cases in the study area across all time periods. If a cylinder exhibits a likelihood ratio greater than 1, that is
nZ
µ(Z) > N−nZ

N−µ(Z)
, its risk is elevated. Out of all the candidate cylinders, the most likely cluster is denoted

as the cylinder that has the highest likelihood ratio. We assess statistical significance using 999 Monte Carlo
simulations, to obtain 999 likelihood ratios for each candidate cluster that form a distribution under H0. In
addition, we report secondary clusters if statistically significant at the p < 0.001 level.

We map the distribution of risk inside significant cylinders as relative risk (RR), which is the risk within a
location divided by the risk outside. Therefore, for each county that belongs to a cluster, we compute and report
Equation (3):

RR =
c/e

(C − c) / (C − e)
(3)

where c is the total number of cases for a given county, e the number of expected cases in a county, and C the
number of observed cases in the U.S. Similarly, we report RR for clusters.
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3 Results

Table 1 shows significant clusters of COVID-19 in the U.S. at the county level, as detected by prospective
Poisson space-time scan statistic for January 22nd - April 27th, 2020. As expected, New York City and its
neighboring counties form the strongest cluster of observed cases (Cluster 1). However, in terms of relative
risk, Cluster 10 (Bledsoe County, TN) ranks higher, as it has an expected number of cases of 1.8 due to low
population. The spatial distribution of clusters shows that hot spots of COVID-19 can be found in every major
region in the U.S., suggesting a widespread presence of the virus.

As compared to significant clusters resulting from our previous analysis [1] of the January 22nd - March
27th, 2020 period, we observe less clusters (16 vs. 26), but their size generally increased (average number of
counties per cluster: 79 vs. 14), and exhibit higher relative risk (average relative risk: 24.5 vs 5.7). These
observations mirror the spread and increasing number of confirmed cases as the virus permeates our society, as
well as spatial diffusion as exemplified by person-to-person disease transmission.

It is worth noting the clusters that disappeared (became insignificant) since March 27th, 2020: the Salt Lake
City (UT) region, Kershaw County (SC), southeastern Indiana, the San Francisco Bay area (CA), the Denver
(CO) area. The reason for vanishing clusters may be increased awareness, successful measures to flatten the
curve (i.e. social distancing, wearing of masks and gloves), or they might simply be an indication of a locally
maturing epidemic. Also, the number of cases in those areas may simply be too low compared to surrounding
areas. In order words, the magnitude of these clusters was not enough to hold the ’cluster’ denomination again
in the current analysis.

Cluster Duration p- Observed Expected RR # of # of
(days) value counties counties

with RR > 1

1 Mar 22nd - Apr 27th < 0.001 447,076 36,714.3 21.9 59 52
2 Mar 28th - Apr 27th < 0.001 89,980 24,296.0 3.9 129 68
3 Apr 2nd - Apr 27th < 0.001 83,984 23,838.7 3.7 221 122
4 Mar 26th - Apr 27th < 0.001 20,761 2,886.3 7.3 29 29
5 Mar 27th - Apr 27th < 0.001 15,325 4,637.1 3.3 2 2
6 Apr 1st - Apr 27th < 0.001 18,559 7,254.5 2.5 123 106
7 Apr 11th - Apr 27th < 0.001 8,055 1,729.0 4.6 127 38
8 Apr 11th - Apr 27th < 0.001 2,878 285.7 10.0 15 9
9 Mar 31st - Apr 27th < 0.001 17,738 8,700.2 2.0 1 1
10 Apr 24th - Apr 27th < 0.001 577 1.8 318.1 1 1
11 Apr 3rd - Apr 27th < 0.001 2,324 424.9 5.4 7 6
12 Apr 1st - Apr 27th < 0.001 26,594 17,862.0 1.5 424 154
13 Apr 26th - Apr 27th < 0.001 8,463 4,044.4 2.1 14 9
14 Apr 17th - Apr 27th < 0.001 982 454.4 2.1 63 18
15 Apr 5th - Apr 27th < 0.001 4,797 3,510.6 1.3 47 13
16 Apr 24th - Apr 27th < 0.001 614 256.4 2.3 1 1

Table 1: Active space-time clusters of COVID-19 from January 22nd-April 27th, 2020 at the county level (RR
= relative risk) .
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Figure 2: Cumulative number of COVID-19 cases in the contiguous United States between January 22nd and
April 27th, 2020.

4 Discussion and Conclusions
In this paper, we report active and emerging clusters of COVID-19, as identified by the prospective Poisson
space-time statistic. This analysis is a continuation of previous work where we applied the same methodology
[1]. However, as the pandemic of COVID-19 progresses, we used an updated dataset which includes one more
month of records than the previous analysis (January 22nd - April 27th vs. January 22nd - March 27th). The
prospective space-time scan statistic [8] is a practical tool for disease outbreak monitoring, which allows health
authorities to make informed decisions about allocating resources for maximizing the impact their response.
Its appeal lies in the ability to detect active or emerging clusters, and it can be rerun during the course of an
epidemic, as exemplified here, for updated reporting. Timely disease surveillance is especially important due to
the current efforts of relaxing social distancing measures.

Despite its many appeals, the prospective space-time scan statistic used in our study has limitations: First, the
statistic in its basic form only allows for clusters of circular shape. This property has been discussed extensively
in the scientific community, which resulted in many efforts to relax the circular dictate and allow for clusters of
arbitrary shape [15, 16, 17, 18]. Second, we only used confirmed cases, which may not reflect the true magnitude
and spatial distribution of the virus, even though there are reports of asymptomatic carriers [19]. This limitation
points towards current testing practices and could be addressed by increasing the availability and usage of test
sets. Third, further analysis is needed to explore dynamics of COVID-19 within clusters. Some of the significant
clusters were very large and exhibited considerable variation of relative risk within. Therefore, analyzing the
spread of the virus locally (i.e. within the affected regions) is needed for a more effective response.

Given the limitations of our approach, future work should focus on exploring patterns of COVID-19 induced
mortality and its relationships with socioeconomic characteristics of affected regions. Especially the distribution
of at-risk groups should be considered and analyzed in relation to mortality patterns, in order to better inform
authorities on their mitigation efforts. In addition, there is an urgent need to study the relationship between
reactions of humans (e.g., fear, panic, hate) to the current pandemic of COVID-19 and the characteristics of
their residential neighborhood. Federal, state, and local countermeasures, as well as resourcing and funding
initiatives, must consider demographic and socioeconomic factors and their association with people’s response
to disease outbreaks.
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