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Abstract. Vector-borne diseases affect more than 1 billion people a year worldwide, causing more than 1 million
deaths, and cost hundreds of billions of dollars in societal costs. Mosquitoes are the most common vectors responsible
for transmitting a variety of arboviruses. Dengue fever (DENF) has been responsible for nearly 400 million infections
annually. Dengue fever is primarily transmitted by femaleAedes aegypti andAedes albopictusmosquitoes. Because both
Aedes species are peri-domestic and container-breeding mosquitoes, dengue surveillance should begin at the local
level—where a variety of local factors may increase the risk of transmission. Dengue has been endemic in Colombia for
decades and is notably hyperendemic in the city of Cali. For this study, we use weekly cases of DENF in Cali, Colombia,
from2015 to 2016 and develop space–time conditional autoregressivemodels to quantify howDENF risk is influenced by
socioeconomic, environmental, and accessibility risk factors, and laggedweather variables. Ourmodels identify high-risk
neighborhoods for DENF throughout Cali. Statistical inference is drawn under Bayesian paradigm using Markov chain
Monte Carlo techniques. The results provide detailed insight about the spatial heterogeneity of DENF risk and the
associated risk factors (such as weather, proximity to Aedes habitats, and socioeconomic classification) at a fine level,
informing public health officials tomotivate at-risk neighborhoods to take an active role in vector surveillance and control,
and improving educational and surveillance resources throughout the city of Cali.

INTRODUCTION

Vector-borne diseases (VBDs), more specifically mosquito-
borne arboviruses, are responsible for 1 billion infectious
disease cases each year, globally.1,2 Mosquitoes transmit a
variety of arboviruses and are the most common vectors.
Dengue fever (DENF) is a mosquito-borne disease that is
responsible for most of the global burden of arboviruses.3

More than 40% of humans are at risk of transmission, with
incidence rising 30-fold in the last 50 years, and it is esti-
mated that there are approximately 390 million DENF in-
fections annually.4 Dengue fever is primarily transmitted by
the Aedes aegypti and Aedes albopictus mosquitoes.5,6

Both species are container-breeding mosquitoes that have
become prolific in urban areas because of the widespread
availability of breeding habitats.7

Dengue is a flavivirus that causes DENF, and there are four
serotypes that follow the human cycle.8 The incubation period
ranges from 3 to 14 days after being bit by an infected mos-
quito, and symptoms can last from 2 to 7 days9; however,
approximately 80% of infected individuals are asymptomatic.
Infection from one serotype will result in lifelong immunity to
that serotype; however, secondary infection with another se-
rotype can lead to severe forms of DENF,10 such as dengue
hemorrhagic fever (DHF) and dengue shock syndrome (DSS).
Dengue hemorrhagic fever and DSS primarily not only affect
pediatric patients but also have been found among adults
(especially the elderly); mortality from dengue is highest
among children and those who have experienced DSS.11

It is critical to implement surveillance strategies that can
improve the understanding of DENF transmission. Improving

DENFsurveillance can facilitate the timely reporting of disease
cases, reduce underreporting, informpolicy-makers, increase
disease awareness, and define funding and research priori-
ties,12 ultimately reducing the economic and public health
burdens in at-risk locations around the world.13 Approaches
and advances in geographic information science and spatial
epidemiology play critical roles inDENFsurveillance—suchas
tracking diffusion and cyclic patterns, detecting clusters,
mapping disease rates and risk,14 and understanding the
place-based determinants of disease transmission.15 Dengue
fever risks and rates will vary by place, and covariate data are
needed to identify significant variables responsible for ob-
servable spatial patterns.16

Therefore, it is critical to examine the social, economic,
environmental, biological, and institutional factors that may
affect DENF prevalence in a particular area. Urban regions are
highly complex, and neighborhoods are the scale that public
health departments most effectively operate.17 Therefore,
more small-area studies in spatial epidemiology are required
to effectively uncover the spatial and temporal heterogeneity
of DENF rates across urban landscapes at these fine levels of
granularity.Forexample,education, income,age,access tocare,
and quality of prevention strategies are known to strongly influ-
ence an individual’s susceptibility to VBDs.18,19 Likewise, the
dynamics of how temperature, precipitation, and humidity affect
vector abundance and DENF transmission are critical to de-
veloping and implementing effective sub-seasonal risk model20

and long-term mitigation in response to climate change.21

Conditional autoregressive (CAR) models can be used to
examine how DENF risk is influenced by socioeconomic, en-
vironmental, andaccessibility risk factors, and laggedweather
variables. For example, a particular locationmaybe influenced
by DENF rates and a variety of explanatory variables (e.g.,
socioeconomic status and proximity to Aedes habitats) con-
tained in surrounding locations (spatial spillover/diffusion ef-
fects). Conditional autoregressivemodels can be fitted to data
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under Bayesian paradigm (i.e., relying on prior beliefs/
borrowing information to inform future estimations) using
Bayesian hierarchical models (BHMs), which are widely used
techniques in geography and public health to model spatial
and spatiotemporal data.22 In short, BHMs can model com-
plicated spatial and space–time processes by conditionally
modeling the variations in data, the process, and unknown
parameters.23 The temporal extension, space-time (ST)-CAR,
can estimate the value of a variable (e.g., disease rates) at a
particular location and time, which will be related to current
andpast values of the surrounding locations and timeperiods,
essentially testing for spatiotemporal dependence. ST-CAR
models have been used to study the effect of air pollution on
human health,24 substance abuse, and its relationship with
child abuse,25 influenza,26 and DENF.27–29

More research is necessary to examine the local variations
in DENF transmission dynamics at very fine spatial and

temporal scales. Delmelle et al.30 used a geographically
weighted regression (GWR31) model which identified six sig-
nificant socioeconomic and environmental independent vari-
ables (including proximity to tire shops and population
density) of DENF rates in Cali, Colombia, at the neighborhood
level. However, the explanatory power of GWR and its tem-
poral extension—GTWR32

—is limited. BothCARandST-CAR
models produce model-based estimates and inference de-
rived from varying effects via spatial random fields—for ex-
ample, borrowing strength from neighborhood spatial and
temporal proximity, whereas GWR models allow the cova-
riates to vary in space (and time in the case of GTWR), but
inference is ad hoc. In other words, ST-CAR models can es-
timate spatially and temporally varying associations between
dependent (e.g., disease rates) and independent variables
based on locally weighted regressions in both geographic and
attribute spaces, whereas GTWR can only produce local

FIGURE 1. Neighborhoods in Cali, Colombia, and their ranking by socioeconomic strata (1–6). This figure appears in color at www.ajtmh.org.
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estimates in geographic space. It is therefore worthwhile to
use ST-CAR modeling in small-area DENF studies at fine
temporal scales.
This study uses a ST-CAR modeling approach to examine

the influence of socioeconomic, environmental, weather, and
climatic variables on DENF outbreaks in Cali, Colombia, at the

neighborhood andweekly levels between 2015 and 2016. The
approach can determine if DENF rates and covariates in one
neighborhood are influenced by rates and covariates in sur-
rounding neighborhoods and time periods. We also estimate
disease risks using temporally lagged weather variables. Our
modeling approach is capable of identifying regions with

FIGURE 2. Temporal distribution of weekly dengue fever (DENF) cases inCali, Colombia from January 2015 throughDecember 2016 (top); spatial
distribution of DENF cases for the study period (bottom). This figure appears in color at www.ajtmh.org.
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high-risk clusters at the neighborhood level. The results pro-
videdetailed insight about the spatial heterogeneity of disease
risk and the associated risk factors at a fine level, informing
public health officials to motivate at-risk neighborhoods to
take an active role in vector surveillance and control, and im-
proving educational and surveillance resources throughout
the city of Cali.
The remainder of this article is as follows: Section 2provides

information about Cali, the DENF cases, and candidate-
independent variables; the technique to select the lagged
weather variables; and the ST-CAR modeling approach.
Section 3 provides themodeling results, includingmaps of the

estimated DENF rates by week for each neighborhood in Cali.
Section 4 discusses key findings, strengths, limitations, and
avenues of future research. Section 5 summarizes findings
with concluding remarks.

DATA AND METHODS

Study area and data. Cali is the second largest city in
Colombia and the third most populous, with an estimated
2010 population of 2.3 million (average density of 4,000 km2).
The city comprises 340 neighborhoods (Spanish: barrios),
which are classified by socioeconomic stratum (ranging from

TABLE 1
Descriptive statistics of the candidate-independent variables for Cali, Colombia

Variable ID Variable name Year Source Value Range

Environmental/Aedes habitats
Green Area of green zones (km2) 2010 City of Cali 196.4* 0–34.9
Rivers Relative proximity to river 2010 City of Cali 1,082.0 0–93,539.3
Tires Relative proximity to tire shops 2010 City of Cali 5.1† 0–28.6
WPumps Relative proximity to water pumps 2010 City of Cali 0.1† 0–0.5
Cement Relative proximity to cemeteries 2010 City of Cali 2.1† 0–9.8
PNurseries Relative proximity to plant nurseries 2010 City of Cali 0.5† 0–1.9
Trees Density of trees (km2) 2010 City of Cali 1,698.9* 8.6–6,355.6

Healthcare accessibility
DistHealth Relative proximity to a healthcare center 2010 City of Cali 4.4† 0–9.2
HealthAvg Mean healthcare center density (km2) 2010 City of Cali 4.2† 0–74.4

Socioeconomic and demographic
Strata Neighborhood stratum 2010 Census 3‡ 1–6
Popdens Population density (km2) 2005 Census 22,099† 0–56,814
%OHH Density of occupied households (km2) 2005 Census 837.2† 0–14,885
%UHH Density of unoccupied households (km2) 2005 Census 98.6† 0–688.4
%Sew Households with sewer (%) 2005 Census 89.8† 0–100
%Water Households with water (%) 2005 Census 90.2† 0–100
%A04 Individual aged 0–4 years (%) 2005 Census 7.3† 0–15.7
%A514 Individual aged 5–14 years (%) 2005 Census 17.2† 0–27.8
%A1524 Individual aged 15–24 years (%) 2005 Census 17.5† 0–69.2
%A2539 Individual aged 25–39 years (%) 2005 Census 23.4† 0–39.1
%A4064 Individual aged 40–64 years (%) 2005 Census 26.3† 0–47.8
%A65 Individual aged 65 years or older (%) 2005 Census 8.3† 0–23.4
%Fem Female population (%) 2005 Census 53.4† 0–100
%White White population (%) 2005 Census 77.2† 0–96.7
%Black Black population (%) 2005 Census 22.1† 0–70.6
%Indig Indigenous population (%) 2005 Census 0.5† 0–8.7
%Disabled Individuals with disabilities (%) 2005 Census 1.1† 0–5.7
%NoRW Individuals who cannot read/write (%) 2005 Census 6.8† 0–5.7
%NoEduc Individuals with no education (%) 2005 Census 3.6† 0–16.8
%LowEduc Individuals with low education (%) 2005 Census 26.9† 0–52.8
%MedEduc Individuals with medium education (%) 2005 Census 49.6† 0–71.3
%HighEduc Individuals with high education (%) 2005 Census 19.9† 0–56.0
%Work Employed individuals (%) 2005 Census 41.1† 0–58.9
%Unem Unemployed individuals (%) 2005 Census 1.5† 0–10.3
%Retired Retired individuals (%) 2005 Census 3.9† 0–15.9
%HW Individuals doing housework (%) 2005 Census 13.6† 0–18
%Students Students (%) 2005 Census 22.9† 0–36.8
%Married Married individuals (%) 2005 Census 19.0† 0–37.9
%Single Single individuals (%) 2005 Census 38.9† 0–100

Weather (weekly observations)
Tavg Mean temperature (�C) 2014–2016 City of Cali 24.2† 22.5–25.7
Tmax Mean maximum temperature (�C) 2014–2016 City of Cali 31.2† 28.5–34.2
Tmin Mean minimum temperature (�C) 2014–2016 City of Cali 19.4† 17.2–20.7
DTRavg Mean daily temperature range (�C) 2014–2016 City of Cali 11.8† 9–15.7
DTRmax Maximum daily temperature range (�C) 2014–2016 City of Cali 14.3† 10.6–21
RHavg Mean relative humidity (%) 2014–2016 City of Cali 73.3† 63.9–83.7
RHrng Relative humidity range (%) 2014–2016 City of Cali 10.6† 2.7–24.1
RainT Total rain (mm) 2014–2016 City of Cali 12.3† 0–103
RainD Total days with measurable rainfall 2014–2016 City of Cali 2.8† 0–7
CoolD Days with minimum temperature < 18 (�C) 2014–2016 City of Cali 0.6† 0–5
WarmD Dayswithmaximum temperature>32 (�C) 2014–2016 City of Cali 2.0† 0–7
* Total.
†Mean.
‡Median.
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1 to 6), where a ranking of 1–2 is low, 3–4 is middle, and 5–6 is
high. The classifications are defined by the external physical
characteristics of the dwelling, its immediate surroundings,
and its urban context. For example, urban context includes
variables such as poverty, social deviation, urban decay, in-
dustry, and commercial; immediate surroundings include
access roads, and sidewalks; and the characteristics of the
dwelling include front lawn, garage, façade material, door
material, front of the house dimensions, andwindows (income
is not considered). This stratification is only applied to resi-
dential constructions.33 Figure 1 provides a map of neigh-
borhoods inCali and their corresponding ranking. Theaverage
size of neighborhoods in Cali is 0.35 km2. Some of the smaller
neighborhoods are in the city core, which iswhere the city was
founded. The largest neighborhood is to the south and cor-
responds to newer developments, and is an area that houses
three of the largest universities in Cali.
Individual cases of DENF for the years of 2015 and 2016 at

the weekly level were used (Figure 2, top), which were pro-
vided by Colombia’s National Institute of Health. Between
2015 and 2016, Cali experienced three major outbreaks:
March to mid-May 2015, February to early-April 2016, and
mid-June 2016 to early August 2016 (represented by the
peaks in Figure 2, top). The cases were geocoded to the
neighborhood level using each neighborhood’s name as
the address locator in the geocoder algorithm in ArcGIS 10.6
(ESRI, Redlands, CA). Each DENF case record contained a
neighborhood where the infected individual lived (individual
addresses were not available), and then the geocoder ag-
gregated the cases to a particular neighborhood after a suc-
cessful match. As a result, 26,503 of 35,498 DENF cases
(74.6%) were successfully geocoded and aggregated to the
neighborhood level in Cali. Cases that were not geocoded did
not have an address or a neighborhood; therefore, it was im-
possible to assign coordinates to the unmatched cases.
Figure 2 (bottom) provides a map of the total DENF cases

per neighborhood between 2015 and 2016 inCali. The eastern
portion of Cali observed the highest number of DENF cases
between the 2 years in our studyperiod. Theseneighborhoods
were majority low-strata (1 and 2); however, there are nu-
merous middle-strata (3 and 4) neighborhoods in the central
and southern portions of Cali with a high number of DENF
cases. There are also high strata neighborhoods with a high
proportion of cases in the central and western regions of
Cali, especially those that are adjacent to lower strata
neighborhoods.
The socioeconomic and demographic data were provided

by the Colombian census (either 2005 or 2010 estimates
provided by the city of Cali), including population density, age,
race, households with sewer and water access, educational
attainment, employment status, and socioeconomic stratum,
among others. The last national census occurred in 2005,
whereas the new 2018 census has yet to be released. The

location of healthcare centers and the environmental variables
were provided by the city of Cali (2010 data)—green zones,
rivers, tire shops, water pumps, cemeteries, and plant nurs-
eries, whichwere geocoded as point layers with the exception
of green zones (area: polygons) and rivers (lines). The envi-
ronmental variables are included as potential Aedes habitats.
For green zones, the area of the green zones for each neigh-
borhood was computed in square kilometers. Similar to Del-
melle et al.,30 relative proximity to rivers, tire shops, water
pumps, cemeteries, plant nurseries, and healthcare centers
was computed by using kernel density estimation (KDE)—
representing the density of points for each layer. Kernel den-
sity estimation was also computed to produce the density of
trees. Zonal statistics in ArcGIS 10.6 was used to summarize
the average KDE for each neighborhood in Cali.
Finally, the weather variables selected for evaluation

(Table 1) are consistent with current understanding of how
weather conditions impact Aedes survival, abundance, and
behavior, including viral transmission rates20,34 (Table 5).
Given our goal of developing a risk model using 2015–2016
weekly-level DENF data, the weather variables entail weekly
summaries of 2014–2016 daily meteorological observations
collected at the Cali international airport and obtained from
the Global Historical Climate Network archive35 maintained
by the National Centers for Environmental Information (http://
www.ncdc.noaa.gov). All weekly weather variables were
computed following the methods outlined in the study by
Eastin et al.,20 and summary statistics for the 2014–2016 pe-
riod are provided in Table 1. A total of 49 candidate-predictor
variables of DENF were evaluated in this study (Table 1). Be-
cause of the differences in units of measurements, each var-
iable was normalized between 0 and 1 (i.e., between the
maximum and minimum values listed in Table 1) for all sub-
sequent analyses.
Methodology. Principal component analysis (PCA) and

variance inflation factor (VIF) testing. Because of the large
number of socioeconomic and demographic variables, and
environmental variables (n = 36), we used VIF36 testing and a
PCA37 in Stata. We did not include all variables in the PCA
because we wanted to interpret particular independent vari-
ables of DENF individually, which is important for potential
decision-making. For example, identifying the effects of
individual Aedes habitats (e.g., tire shops and trees) can
provide more intuitive results than grouping them in a PCA.
As a result, five variables were selected for subsequent
modeling with a VIF value < 3: population density, tree den-
sity, relative proximity to rivers, relative proximity to tire
shops, and relative proximity to plant nurseries.
The PCA’s purpose is to reduce and simplify the variables

into new variables (components) that explain a large degree of
variationwithout collinearity between the components. Tables
2 and 3 provide the results of the PCA analysis and include the
variables that were included—which were not included in
the VIF testing. Table 2 describes the variance explained by
the top three principal components, and Table 3 shows the
variables that belong to each component. After examining the
eigenvalues and component loadingswith coefficients > 0.40,
the first two components were selected for inclusion in the
space–time modeling, which explains 60.8% of the variance
(42% and 18.8%, respectively).
Principal component (PC) 1 is strongly associated with

(correlation close to 0.5 and greater) neighborhood strata,

TABLE 2
Explained variance by top three principal components

Component

Extraction sums of squared loadings
Rotation sums of squared

loadings

Total Variance Cumulative % Total % Of variance

1 4.516 45.163 45.163 4.203 42.032
2 1.703 17.031 62.194 1.882 18.817
3 1.072 10.719 72.912 1.206 12.064
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individuals who are employed, retired persons, married indi-
viduals, empty households, and individuals with high educa-
tion. PC2 mainly explains occupied households, individuals
who do housework, and individuals who are students. PC3
explains the combined effect from disabled individuals but
was excluded from further analysis, and it was included as a
separate variable in further VIF testing with the remaining
covariates. PC1 can be interpreted as employed, higher-
income people who are likely to be older andmarried because
of the large coefficients of retired andmarried individuals. PC2
canbe interpreted aspeoplewho are likely to spendmore time
at home than those in PC1 because they are either students or
do housework for a living. PC2 probably also captures youn-
ger individuals because of the inclusion of students.
Selecting lagged weather variables. First, VIF testing was

used to assess multicollinearity among the candidate weekly
weather variables (Table 1) and remove the most intercorre-
lated variables while retaining the most independent. Seven
variables (with VIF values < 3) were selected for the sub-
sequent cross-correlation analysis: Tavg, DTRmax, RHrng,
RainT, RainD, CoolD, and WarmD. Next, lagged cross-
correlations were computed between weekly DENF rates
and each weather variable over an 8-week window (Table 4).
Such time frame was considered the most biologically plau-
sible based on the existing literature of how weather affects
the full vector life cycle and viral transmission dynamics20,34

(see Table 5). Finally, an optimal lag for each weather variable
was selected among those weeks exhibiting a statistically sig-
nificant (at the 5% level; adjusted for multiple testing) cross-
correlationwithin the1- to8-week-lagwindow (0-week lagswere
not considered because of their lack of predictive potential). For

six variables (Tavg, DTRmax, RainT, RainD, CoolD, andWarmD),
the selected optimal lags (5 weeks, 5 weeks, 3 weeks, 5 weeks,
2 weeks, and 5 weeks, respectively) exhibited the maximum
cross-correlation coefficient (Table 4). For RHrng, the maximum
correlation occurred at 6 weeks, but the 3-week lag was
deemed optimal because the existing literature suggests that
relative humidity is most influential on adult vectors and the
gonotrophiccycle (Table5). Theoptimal lagswere included in the
ST-CAR models.
Poisson generalized linear models (GLMs). First, a Poisson

GLM is computed to detect significant effects of independent
variables on a dependent variable (DENF risk), and the pres-
ence of spatiotemporal autocorrelation in the residuals. The
Poisson GLM is defined as

Yij ∼Poisson
�
EijRij

�
, (1)

log
�
Rij
�¼β0 þβ1PC1i þβ2PC2i þβ3PNurseriesi þ β4Tiresi

þβ5popdensi þβ6riversi þβ7treesi þβ8Tavgij
þβ9DTRMaxij þβ10RHrngij þ β11RainTij

þβ12RainDij þβ13CoolDij þ β14WarmDij,

(2)

where Yij is the observed DENF count in neighborhood i at
week j, Eij is the expected DENF count in neighborhood i at
week j, and Rij is the disease risk in neighborhood i at week
j (see Supplemental Materials for the results of the Pois-
son GLM).
Global Moran’s I54 was then computed to detect spatial

autocorrelation of the Poisson GLM residuals for each time
period. Essentially, the Global Moran’s I test determines if
there is evidence of unexplained spatial autocorrelation in the
residuals, and if positive spatial autocorrelation is detected,
then the assumption of independence is not valid for the data,
and spatiotemporal autocorrelation should be considered
when estimating covariate effects on the dependent variable.
The global Moran’s I index ranges from −1 to 1, whereas −1
indicates strong negative spatial autocorrelation, 0 indicates
complete spatial randomness, and one indicates strong
positive spatial autocorrelation, and the statistic is defined as

I¼n+i+lwilðxi � �xÞ�xl � x�
�

+i+lwil+ðxi � �xÞ2
, (3)

where n is the total number of neighborhoods,wij is the spatial
weight between neighborhood i and l, �x is themean of residuals
for all neighborhoods, xi is the residual value in neighborhood i,

TABLE 3
Rotated component loadings with coefficient > 0.40

Variable

Component

1 2 3

Strata* 0.856 – –

%OHH† – 0.749 –

%HW† – 0.657 –

%Work† 0.784 – –

%Retired† 0.781 – –

%Disabled† – – 0.782
% Student† – 0.873 –

%Married† 0.941 –

% EmptyHH† 0.484 – −0.514
% HighEduc† 0.940 – –

* Neighborhood strata classification between 1 and 6.
†Proportion (%) of individuals in each category: 1) occupied households, 2) work from

home, 3) retired persons, 4) disabled persons, 5) students, 6) married persons, 7) empty
households, and 8) holds college degree or higher.

TABLE 4
Lagged cross-correlations between DENF rates and weekly weather variables during 2015–2016 in Cali, Colombia

Lag (weeks) Tavg RainT RHrng DTRmax RainD CoolD WarmD

0 0.419* −0.207 −0.012 0.463* −0.508* 0.202 0.507*
−1 0.285* −0.413* −0.057 0.150 0.011 −0.109 0.261*
−2 0.032 0.098 0.212 0.077 0.337* −0.354† 0.095
−3 0.074 −0.458† −0.448† 0.029 −0.012 −0.166 −0.012
−4 0.257* −0.092 −0.166 0.105 −0.488* 0.081 0.201
−5 0.369† −0.262* −0.362* 0.236† −0.542† 0.201 0.287†
−6 0.255* −0.316* −0.557* −0.104 −0.359* 0.304* 0.014
−7 0.221 −0.011 −0.473* 0.079 −0.338* 0.283* −0.047
−8 0.242 −0.315* −0.098 −0.088 −0.309* 0.181 −0.156
*Significant at the 5% level (after adjustment via a Bonferroni correction for multiple testing).
†Selected lag for ST-CAR modeling.
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and xl is the residual in neighborhood l. TheMoran’s I testswere
conducted in RStudio 1.2.5 with R version 3.6 (RStudio, Bos-
ton, MA).
ST-CAR modeling. Next, a BHM24,25 is defined using a

Poisson data model (for case/population data). The model
“represents the spatiotemporal pattern in the mean response
with a single set of spatially and temporally autocorrelated ran-
dom effects. The effects follow a multivariate autoregressive
process of order 1.54 In other words, when going from 1week to

another (e.g., j+1), itwill yield aneffect on thedependent variable
(DENF risk). Therefore, this model examines linear trends which
can be interpreted as how DENF risk is influenced across time.
It is assumed that the estimated effect on DENF risk in the

ST-CAR model is not specific to a particular week, but a
process that is influenced by the covariate data across the
weeks (temporal unit). Suppose a study region is divided into a
collection of N nonoverlapping areal units (e.g., neighbor-
hoods) indexed by i2f1, . . . ,Ng and the data are observed for

TABLE 5
Temporally lagged weather variables and correlation with Aedes’ life cycle

Development Stage Range (days)*
Total lag
(weeks)† Variable

Expected
relation Rationale

Primary
sources

Larval/pupa development (vector
grows in water)

10–21 3–8 RainT Positive More total rain produces more
stagnant pools; promotes larval
development

38, 39

RainD Positive More frequent rain produces more
stagnant pools; promotes larval
development

40, 41

Tavg Positive Warmer temperatures promote larval
development

42, 43

DTRmax Negative Smaller ranges imply fewer hours with
cold temperatures; greater larval
survival

20, 44

RHrng Negative Smaller ranges imply fewer dry days;
stagnant pools quickly evaporate

20, 45

WarmD Positive More warmer days promote greater
larval densities

44, 46

CoolD Negative Fewercolddayspromotegreater larval
survival

44, 46

Gonotrophic cycle (vectors feed on
humans)

3–7 2–5 RainT Negative Rainfall tends to coincide with cooler
temperatures; less vector feeding

20, 47

RainD Negative Rainfall tends to coincide with cooler
temperatures; less vector feeding

20, 47

Tavg Positive Vector feeding more frequent at
warmer temperatures

48, 49

DTRmax Negative Vector feeding more frequent at
warmer temperatures; smaller
DTRmax implies fewer cold hours

20, 42

RHrng Positive Vector feeding more frequent during
dry periods; larger RHrng implies
more dry days

20, 45

WarmD Positive Vector feeding more frequent at
warmer temperatures

50

CoolD Negative Vector feeding more frequent at
warmer temperatures; fewer cold
hours

50

Extrinsic incubation (virus matures in
vector)

7–15 1–4 RainT Unknown No known link between rainfall and
extrinsic incubation

N/A

RainD Unknown No known link between rainfall and
extrinsic incubation

N/A

Tavg Positive Viral development more rapid at
warmer temperatures

48, 51

DTRmax Negative Viral development more rapid at
warmer temperatures; smaller
DTRmax implies fewer cold hours

50

RHrng Positive Viral development more rapid in humid
environments; smaller RHrng
implies fewer dry days

52, 53

WarmD Positive Viral development more rapid at
warmer temperatures

50

CoolD Negative Viral development more rapid at
warmer temperatures; fewer cold
hours

50

Intrinsic incubation (virus matures in
humans)

1–12 0–2 N/A N/A No known link between weather and
intrinsic incubation

N/A

Dengue reported (laboratory
confirmation)

– – N/A N/A N/A N/A

Total 21–55 0–8 – – – –

* Based on 20, 34.
†Total lag (weeks before laboratory confirmation): accumulated range for each stage in the vector–dengue transmission cycle.
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multiple time periods, that is: j2f1, . . . ,Tg. As suggested
before, ST-CARmodels useprior distributions,where theCAR
distributions state that adjacent variables in space or time
are conditionally autocorrelated, and nonadjacent variables
are conditionally independent. The spatial weight matrix is
defined asW = ðwikÞ, where a value of 1 indicates that i and k
are spatially adjacent, and 0 otherwise. Because it is unknown
where a person was infected, the abovementioned adjacency
matrix is a proxy for Aedes’ maximum range—because they
do not fly more than 400 m from where they emerged as lar-
vae.10 A temporal weight matrix can also be defined as D =
ðdjtÞ, where a value of 1 is given if t − j = 1, and 0 otherwise.
The first part of the model is defined as

YijjEij,Rij ∼Poisson
�
EijRij

�
, (4)

ln
�
Rij
�¼XT

ij βþOij þfij, (5)

βk ∼Nð0;1;000Þ k 2f1, . . . ,pg, (6)

whereYij is theobservedDENFcount inneighborhood iatweek j,
Eij is the expected disease count in neighborhood i at week j,
and Rij is the disease risk in neighborhood i at week j. XT

ij
ðxij1 . . . ,xijpÞ is a vector of known covariates p for neighborhood i
and week j. The parameter β is an associated p × 1 vector of
regression parameters, which can come from the initial Poisson
GLM in Equations (1) and (2). The term O is a vector of known
offsets ðO1, . . . ,ONÞK × N, where Oj is a K × 1 column vector of
offsets (expectedDENFcases) forweek j ðO1j, . . . ,OKjÞ. Anoffset
variable is used to scale themodeling of the mean in Poisson’s
regression with a log link, which is the case in the afore-
mentioned model. For example, because the dependent
variable is rates, the offset can enforce that 10 cases of
DENF in 1 week is not the same magnitude as 10 cases of
DENF in 6 weeks. The parameter fij denotes spatiotem-
porally autocorrelated random effects for neighborhood i
and week j. A variety of spatiotemporal structures can be fit
for fij. Here, we use a model that estimates the evolution of
the spatial response surface over time without forcing it to
be the same for each time period (Rushworth et al.55).

fðf1, . . . ,fTÞ∼ fðf1Þ ∏
T

j¼ 2
f
�
fjjfj�1

�
, (7)

where fj = ðf1j, . . . ,fNjÞ is a vector of random effects for week
j. Temporal autocorrelation is enforced because fj depends
on fj�1. fðf1Þ enforces spatial autocorrelation in the random
effects, where the spatial structure is defined in the CAR prior
in Equation (8):

fi1jf�i ∼N

 
ρ+N

k¼ 1wikfk1

ρ+N
k¼ 1wik þ 1�ρ

,
τ2

ρ+N
k¼ 1wik þ 1�ρ

!
, (8)

where ρ controls the spatial autocorrelation, with ρ = 1 in-
dicating strong spatial autocorrelation, which is conditional on
the mean random effects of adjacent neighborhoods. ρ =
0 represents independent randomeffectswith a constantmean
and constant variance. The conditional precision is controlled
by τ,whereprecision ishigherwhenmoreprior information (e.g.,
adjacent neighborhoods) is borrowed to determine the poste-
rior estimates. Equation (9) (CAR prior) enforces temporal au-
tocorrelation in the random effects and is defined as

fjjfj�1 ∼N
�
αfj�1, τ2Q½ρ,W��1

�
j2f2; . . . ,Tg; (9)

where Qðρ,WÞ is a precision matrix that is defined as
ρðdiagonal½W1� �WÞ+ ð1�ρÞI, where I is a N × N identity
matrix and “1” is a vector of ones (N × 1). The α controls the
temporal autocorrelation, where 0 is temporally independent
and 1 is strongly temporally dependent. The CAR priors also
include weakly informative hyperpriors (i.e., probability distri-
bution from priors to inform/update posterior values), which
are the three parameters defined in the following text:

τ∼Uniform½0; 1; 000�,

α∼Uniform½0; 1�;

ρ∼Uniform½0; 1�:
The values of the hyperpriors are selected in a way so that our
Bayesian inferences are robust and not sensitive to these
choices. For example, a nonstationary spatial process would
occur when ρ = 1, and a nonstationary temporal process
would occur if α = 1. Overall, the ST-CAR model states that
when going from 1week to another (j + 1), it yields an effect on
the dependent variable (DENF risk), which is influenced by
spatially and temporally dependent covariates. In other
words, DENF risk in a target neighborhood is influenced by
current and past values of DENF risk and covariates at
surrounding neighborhoods and time periods (which is a
process that evolves over time). Conceptually, a spatial
example would suggest that a neighborhood with a low risk
of DENFwould have an increased risk of DENF if an adjacent
neighborhood reported a high risk of DENF (dependence/
autocorrelation).
Statistical inference is derived from Markov chain Monte

Carlo (MCMC) simulations.56 Markov chain Monte Carlo is a
popular technique for Bayesian inference when posterior
distributions are not available in closed forms. We used
MCMC to generate samples from the posterior distributions
induced by our ST-CARmodels and used them for parameter
and density estimations. For this study, we selected 220,000
MCMC samples; initial 20,000 samples are removed as burn-
in, and the thinning parameter is set to 10 (keeping every 10th
value and removing all others), which thins the samples to
reduce autocorrelation of the Markov chain. As a result,
20,000 samples are used for statistical inference. The de-
viance information criterion (DIC) was used for model as-
sessment and comparison, where lower values of the DIC
indicate a better model fit. The results of two models are
presented inSection3:model 1 (DENFwith no lags) andmodel
2 (DENFwith laggedweather variables). UsingCARBayesST24

in R, the two Poisson GLM models (DENF with no lags and
DENF with lags) were each fitted to the ST-CAR model de-
scribed earlier.

RESULTS

ST-CAR results. The following subsections contain sum-
maries of model results, relative risk estimates for each in-
dependent variable, and mapping the posterior estimates of
DENF rates in Cali for particular time periods (temporal cross
sections).
Model 1. Table 6 (left) summarizes the results of model 1

(DENFwith no lags). The 95%credible intervals do not contain
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a value of 0, indicating that all the covariates exhibit influential
relationships with DENF risk at the neighborhood level in Cali
between January 2015 and December 2016. The spatial au-
tocorrelation value of 0.98 indicates that there is very strong
spatial dependence of the data after adjusting for covariate
effects. The temporal autocorrelation value of 0.11 suggests
that there is some presence of temporal dependence of the
data after adjusting for covariate effects. Therefore, DENF risk
in Cali at the neighborhood level is influenced by DENF rates
and covariates in surrounding neighborhoods and time pe-
riods (weeks). Table 6 (left) also shows the relative risk esti-
mates (%) of DENF in Cali between January 2015 and
December 2016. The results suggest a 4.7% increase inDENF
risk for PC1, a 4.7% decrease for PC2, a 12.9% increase for
proximity to plant nurseries, a 5.5% increase for proximity to
tire shops, a 1.5% decrease for population density, an 11.6%
decrease for proximity to rivers/ravines, a 36% increase for
tree density, a 635% increase for average temperature, a
26.6% increase for dayswithmaximum temperature > 32�C, a
139% increase for relative humidity range, a 45.8% decrease
for total rainfall, a 16.8%decrease for total rainy days, a 76.4%
increase for cool days, and a 73.6% decrease for warm days
when adjusted for other variables. The results will be further
explained in the Discussion.
Model 2. Table 6 (right) summarizes the results of model 2.

The 95% credible intervals do not contain a value of 0, in-
dicating that all the covariates exhibit influential relationships
with DENF risk at the neighborhood level in Cali between
January 2015 and December 2016. The spatial autocorrela-
tion value of 0.98 indicates that there is very strong spatial
dependence of the data after adjusting for covariate effects.
The temporal autocorrelation value of 0.11 suggests that there
is some presence of temporal dependence of the data after
adjusting for covariate effects. Therefore, DENF risk in Cali at
the neighborhood level is influenced by DENF rates and
covariates in surrounding neighborhoods and time periods
(weeks). The DIC (66,964.16) of model 2 is slightly lower than
that of model 1 (DENF with no lags, DIC = 67,055.98). In
general, the lagged weather variables in model 2 shrunk the
CIs of the coefficients (most notably for average temperature

and days temp max), which decreases the uncertainty of our
model’s risk estimates.
Table 6 (right) also shows relative risk estimates of DENF in

Cali between January 2015 and December 2016. The results
suggest a 7.6% increase in DENF risk for PC1, a 3.9% in-
crease for PC2 (negative relationship [decreased risk] inmodel
1), a 19.8% increase for proximity to plant nurseries, an 11.8%
increase for proximity to tire shops, a −16% decrease for
population density, a 12.9% decrease for proximity to rivers/
ravines, a 30% increase for tree density, a 25.2%decrease for
average temperature, a 125.1% increase for days with maxi-
mum temperature > 32�C, an 85% increase for relative hu-
midity range, a 91.2% decrease for total rainfall, a 50.7%
decrease for total rainy days, a 25.3%decrease for cool days,
andan89.3% increase forwarmdays. Thenegative topositive
relationship between DENF and PC2 observed when com-
paring models 1 and 2 is difficult to interpret. This could be
because of the lagged weather variables affecting the poste-
rior estimates. The magnitude of PC2 (low RR) is much lower
than that of other independent variables; therefore, we hy-
pothesize that people who spend more time at home (PC2)
may or may not be more susceptible to DENF, and further
investigation is required.
Mapping the posterior estimates of DENF. Figure 3 provides

maps of the temporal cross sections of model 2 posterior
values for each neighborhood of DENF rates (per 1,000) in Cali
between 2015 and 2016. The weekly estimates were aggre-
gated by month for visualization purposes—January 2015,
July 2015, December 2015, January 2016, July 2016, and
December 2016, respectively.
When comparing the six temporal cross sections, July 2016

experienced the highest DENF risk (estimated posterior mean
values) after accounting for the 14 covariates (including the
lagged weather variables). Interestingly, some locations with
high rates of DENF are classified as middle- (3 or 4) or high-
strata neighborhoods (5 or 6). These middle- and high-strata
neighborhoods are adjacent to low-strata neighborhoods (1 or
2), which suggests that there is spatiotemporal dependence
between them. In other words, there is evidence that middle-
and high-strata neighborhoods are at higher risk when

TABLE 6
ST-CAR model results

Model 1 (DIC: 67,055.98) Model 2 (DIC: 66,954.16)

2.5% Median 97.5% RR (%) 2.5% Median 97.5% RR (%)

Intercept −2.0296 −1.6427 −1.3183 NA −0.8195 −0.5423 −0.3055 NA
PC1 0.0159 0.0463 0.0785 4.7 0.0459 0.0732 0.1 7.6
PC2 −0.0885 −0.0475 −0.0068 −4.6 −0.0042 0.0382 0.0798 3.9
PNurseries 0.0203 0.1213 0.2215 12.9 0.0841 0.1806 0.2787 19.8
Tires −0.0838 0.0531 0.1902 5.5 −0.023 0.1118 0.2469 11.8
Popdens −0.173 −0.0146 0.1482 −1.5 −0.3296 −0.1749 −0.0176 −16
Rivers −0.2473 −0.1233 −0.0029 −11.6 −0.2532 −0.1381 −0.0227 −12.9
Trees 0.1254 0.3071 0.4909 36.0 0.0901 0.2626 0.4404 30.0
Tavg (L5) 1.5864 1.9947 2.3546 635 −0.6022 −0.2908 0.0415 −25.2
DTRMax (L4) −0.24 0.2361 0.9014 26.6 0.4579 0.8115 1.2709 125.1
RelHRng (L3) 0.4641 0.8713 1.342 139 0.4317 0.615 0.8213 85.0
RainT (L3) −1.3716 −0.613 0.003 −45.8 −2.8222 −2.4343 −2.0671 −91.2
RainD (L5) −0.5249 −0.1837 0.1929 −16.8 −0.9178 −0.7063 −0.4845 −50.7
CoolD (L2) 0.0013 0.5678 1.1938 76.4 −0.8337 −0.2914 0.1285 −25.3
WarmD (L5) −1.7085 −1.3392 −0.9888 −73.8 0.2861 0.6383 0.9196 89.3
ρ 0.977 0.9829 0.9872 NA 0.977 0.9824 0.9867 NA
α 0.0736 0.1189 0.1636 NA 0.0737 0.1193 0.1651 NA
DIC = deviance information criterion; model 1 = no lags; model 2 = lagged weather variables.
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surrounded by lower-strata neighborhoods after accounting
for the covariates in the models. Some of the highest pro-
portion of cases were not only observed in the eastern por-
tions of Cali (now shown here) but also include some of the
highest and most densely populated neighborhoods of the
city. After computing rates per 1,000 persons (Figure 3), the
eastern portions of Cali (which include some of the poorest
neighborhoods) have lower reported rates of DENF than
central, southern, and western regions of Cali.

DISCUSSION

This study is the first of its kind to model space–time risk at
the neighborhood andweekly levels of DENFacross 2 years of
disease surveillance data, while also incorporating temporally
laggedweather variables in a ST-CARapproach. Coupling the
lagged weather variables with the spatial covariates of DENF
risk, the models include neighborhood-level effects explain-
ing where and why certain locations are more at risk than
others. A quintessential spatiotemporal model

decomposes the variability in the outcome in large-scale vari-
ations (the mean function) and small-scale variations (the spa-
tiotemporal random effects).22 Independent variables were
used to characterize large-scale variations, whereas spatio-
temporal autocorrelation was used to characterize small-scale
variations. The lagged independent variables modified the
large-scalevariations,and, for thesedata, it seemstheyhaveno
effect on small-scale variations. The predictive power of the
models remains the same, very close DIC values (see Table 6).
That is why we are seeing quite robust estimates of spatial
autocorrelationparameters in bothmodels. There aremany key
findings that warrant further investigation and explanation.
Influence of socioeconomic and environmental factors.

First, there is very strong evidence that there are both spatial
and temporal dependences between DENF risk and the sig-
nificant covariates for adjacent neighborhoods in Cali. Al-
though DENF had a much lower temporal autocorrelation
(value of 0.11 for both models 1 and 2), this can be explained
by the distribution of cases between 2015 and 2016—there
were three distinct peaks, but DENF remains a persistent

FIGURE 3. Temporal cross sections ofmodel 2 posterior values for each neighborhoodof dengue fever (DENF) rates (per 1,000) inCali, Colombia.
This figure appears in color at www.ajtmh.org.
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threat because of the four serotypes of the virus. The very
strong spatial autocorrelation values (although extremely
high) for DENF suggest that outbreaks in adjacent neighbor-
hoods are strongly related (i.e., living next to a neighborhood
with high cases will strongly influence DENF risk and cases in
your neighborhood of residence).
When examining the results of the three socioeconomic

covariates (PC1, PC2, and population density), the increased
risk of DENF for PC1 is an interesting finding. This corrobo-
rates with Delmelle et al.,30 who suggest that in the southern
part of Cali, houses are typically bigger with relatively larger
yards, which may provide a suitable habitat for Aedes to
breed. Neighborhoods with a high proportion of people in the
PC1 category (e.g., employed, older, and more educated) are
also typically adjacent to middle- or lower-strata neighbor-
hoods (with the exception of the extreme south), which also
may increase the risk of disease due to the very strong evi-
dence of space–time dependence between the locations, as
suggested by the models. An increased risk of DENF was
reported for neighborhoods with higher proportion of indi-
viduals in the PC2 category (i.e., work from home and stu-
dents). This finding corroborates with strong evidence that
Aedes proliferates in and around homes,57–59 and it has also
been found that cases can substantially decline if Aedes trap
interventions are put in place in at-risk communities.60

Another unexpected result was the negative relationship
between population density and DENF. One explanation can
be that some of the densely populated neighborhoods in the
eastern part of Cali have a high concentration of Afro-
Colombian population, which has been suggested to be less
susceptible to the viruses.61,62 Furthermore, there is evidence
that shows that low-density areaswithpoor infrastructuremay
have increased Aedes presence63 and DENF’s complex im-
munology, and the herd immunity resulting after infection from
the viruses64 may have contributed to these patterns. Among
other factors, high density of populations may not necessarily
be a main risk factor of VBD transmission.65 Although in-
creases in population and urbanization will undoubtedly in-
crease the risk of VBD transmission, the true effect of
population density may vary at fine spatial levels (e.g.,
neighborhoods). Public health authorities typically carry out
fumigation and education programs in neighborhoods with
higher population densities, which may result in a lack of tar-
geted interventions in less dense areas with Aedes pop-
ulations (e.g., sewers and green areas). Vector control efforts
in Cali include storm sewer control, spraying, use of guppy
fish, visits to health facilities and homes, and community ed-
ucational campaigns.35

Closer proximity to plant nurseries, tire shops, and higher
tree density all exhibited an increased risk of DENF. Plant
nurseries and tire shops are common breeding grounds of
Aedes; thus, neighborhoods within close proximity are gen-
erally at a higher risk of disease transmission. Tree density
may also be a significant risk factor of Aedes presence be-
cause studies have shown that high tree shade density stim-
ulates breeding, and tree holes are suitable water containers
where Aedes have been found in abundance.66,67

Closer proximity to rivers and ravines (i.e., any moving
bodies of water) resulted in a significantly lower risk of DENF.
Aedes require stagnantwater as a breeding ground; therefore,
the flowing water of a river or ravine would prove to be an
unsuitable habitat for the mosquitoes. Although flooding

events during the rainy season could create stagnant water
sources surrounding the rivers, however, floods may also act
as a disruptive force on Aedes habitat by flushing out their
breeding sites and eggs.68,69 Further research using remote-
sensing techniques (such as flow analysis) could provide in-
sight to areas prone to stagnant water.
Influence of weather factors. In general, the use of opti-

mally laggedweather variables shrunk theCIs about themean
model coefficients and relative risk estimates. Specifically, the
individual relationships between each lagged weather cova-
riate and disease risk became either consistently positive
or consistently negative (except for average temperature).
Moreover, because the optimal lags were different among the
weather covariates, our results imply that individual covariates
impact different stages of the vector life cycle (see Table 5).
Given that such relationships could inform future space–time
modeling and mitigation efforts, the most likely physical
connections between local weather conditions and theAedes
life cycle (Tables 4 and 5) are discussed in greater detail based
on our model 2 results (Table 6).
Variables with an optimal 5-week lag (Tavg, DTRmax,

RainD, andWarmD) aremost influential on larval development.
Both DTRmax and WarmD exhibit the expected positive re-
lationship (Table 5) and large predictive importance based on
relative risk estimations (Table 6), whereas RainD exhibits the
expected negative relationship with moderate importance.
Despite Tavg having an unexpected negative relationshipwith
DENF, its predictive importance is relatively small. Five weeks
before above-average DENF rates, the weather is often
characterized by multiple days with short-lived rain showers
(RainD is above average, its correlation with DENF is negative,
and the regression coefficient is negative), yet each day ex-
periences sufficient sunshine to allow the daily maximum
temperature to exceed 32�C (WarmD is above average, its
correlation with DENF is positive, and the regression co-
efficient is positive).
The short-lived rain showers also induce evaporative

cooling that lowers the daily minimum temperature and in-
creases the daily temperature range (DTRmax is above
average, its correlation with DENF is positive, and the re-
gression coefficient is positive), leading to slightly cooler, but
above-average daily mean temperatures (Tavg remains
above average, its correlation with DENF remains positive,
but the regression coefficient is slightly negative, and the
relative risk is small). Overall, regular rainfall combined with
average- to above-average temperatures produces numer-
ous stagnant pools within a favorable thermal environment
for prolific larval development.
Variables with an optimal 3-week lag (RainT and RHrng) are

most influential on the gonotrophic cycle. Both RainT and
RHrng exhibit the expected relationships (Table 5) with similar
moderate levels of predictive importance (Table 6). Weather
conditions 3 weeks before above-average DENF rates are
often characterized by minimal rainfall (RainT is below aver-
age, its correlation with DENF is negative, and the regression
coefficient is negative) and clear skies, which allows the rela-
tive humidity to fluctuate between small daytime values and
large nighttime values (RHrng is above average, its correlation
with DENF is positive, and the regression coefficient is posi-
tive). Overall, the relatively dry conditions maximize solar
heating, minimize evaporative cooling, and promote thewarm
temperatures most favorable for Aedes feeding.

2050 DESJARDINS AND OTHERS



Finally, variables with an optimal 2-week lag (CoolD) are
most influential on the gonotrophic cycle and extrinsic in-
cubation. Specifically, CoolD exhibits the expected negative re-
lationship (Table 5), but its relative importance is small and
roughly equivalent to that of Tavg. Weather conditions 2 weeks
before above-average DENF rates often exhibit above-average
temperatures (CoolD is below average, its correlationwith DENF
is negative, and the regression coefficient is negative), whereby
thewarmer temperatureswill accelerate both vector feeding and
viral replication within the vector, which increases the potential
for transmission to humans.
Overall, such consistent multi-lag relationships reinforce

the idea that DENF outbreak dynamics are dependent on a
complex combination of weather conditions 2–5 weeks prior
(Eastin et al.20). Careful monitoring of weather conditions
within this time window could optimally inform any sub-
seasonal DENF mitigation efforts. Moreover, it should be
noted that a moderate El Niño occurred during our 2015–2016
study period,70 and there is strong evidence that major DENF
epidemics are more severe during El Niño events.20,71 Therefore,
any sub-seasonalmitigation efforts should also account for inter-
seasonal climate variability.
Limitations.Despite the strengths and contributions of this

research, there are notable limitations and areas of futurework
that are worth discussing. First, the underreporting of cases
and unmatched addresses during the geocoding process
likely undermines the true burden of DENF. Underreporting is
also a major issue in the low-strata neighborhoods and also
not uniform across the city, whereas surveillance systems can
improve the identification of risk factors throughout the city.72

Second, the socioeconomic and demographic data were a
mix from theColombianNational Censusand2010population
estimates. Colombia recently administered a new national
census (the first since 2005) but is currently unavailable. Using
2005 and 2010 data for this study will bias the results, but the
neighborhood classifications (strata) mostly remained un-
changed. The uncertainty resulting from using outdated cen-
sus data is a common limitation found inmany studies in Latin
America and developing countries. Several articles examining
patterns of DENF in Colombia have recognized outdated
population census being a critical issue that could affect the
findings of their research.73–78 Until more recent census are
available, different population growth models could address
this issue, or relying on disaggregated population projection,
using dasymetric mapping.79,80 Third, including vector sur-
veillance data (presence/absence) in each neighborhood
would improve the accuracy of the relative risk estimates.17

Fourth, the spatial weight matrix only considered adjacent
neighborhoods as “neighbors”; we recognize that individual
activity spaces expand far beyond locations nearby their
home. Future research can implement different spatial and
temporal weight matrices for sensitivity analysis purposes.
Fifth, the weather conditions and severity of outbreaks for
DENF varied between 2015 and 2016, which may have af-
fected the model results. Future work can disaggregate the
years and run two separate models for further examination.
Sixth, the space–time patterns of the DENF outbreaks did not
exhibit much seasonality, which is likely because of only using
2 years of data. Further work can use 5–10 years of DENF and
weather data to detect potential seasonal patterns of the ep-
idemics. Finally, weather variability is represented by a single
weather station (and thus limited to the temporal domain).

Future work would benefit frommultiple weather stations that
can document spatial variability across the region.
Opportunities. Chikungunya and Zika are transmitted by

the samevector (Aedes), and further investigation candevelop
a multivariate space–time (MVST) CAR model to examine
which neighborhoods are at higher risk for one disease, two
diseases, or all three concurrently. Multivariate space–time
approach in CAR modeling is still in its infancy stages,24 and
the development of such models can more accurately exam-
ine and compare the co-occurrence of diseases transmitted
by the same vector. A long-term goal is to develop a multi-
parameter early warning system (EWS) that informs public
health officials andmotivates effective vector surveillance and
control measures. The space–time models and methods de-
scribed herein represent progress toward that goal. However,
effective EWS development would require larger and more
comprehensivedatabases (for both robustmodel development
and independent validation) than those currently available. As
noted earlier, an EWS system would benefit from longitudinal
information regarding socioeconomic, demographic, and en-
vironmental variables combined with spatial information re-
garding weather variability across the region.

CONCLUSION

A ST-CAR modeling approach was used to examine signifi-
cant socioeconomic, demographic, environmental, and meteo-
rological risk variables of DENF in Cali, Colombia, during 2015
and 2016. The temporally lagged weather covariates can sig-
nificantly estimate when risk of transmission is highest, and the
spatial covariates can help explain the differences in disease risk
at the neighborhood level. Adding weather and climate data to a
space–time model can improve disease surveillance, especially
for VBDs that require specific conditions for transmission to
occur. Thisstudydemonstrated that therewasstrongspatial and
temporal dependence between adjacent neighborhoods and
time periods, which provides strong evidence that DENF trans-
mission is influenced by characteristics and phenomena occur-
ring in surrounding locations. We also provide evidence that
DENF is not just a disease of the poor; although risk factors may
be higher in neighborhoods of lower socioeconomic status, we
have shown that the transmission dynamics of DENF are place
and temporally based. Despite this study being retrospective in
nature, themodeling approachcanbeapplied in acontemporary
surveillance setting when significant outbreaks have not yet
occurred, highlighting at-risk areas to help promote proactive
community health and improve public health educational cam-
paigns and targeted interventions. We hope that this research
influences further small-area space–time analysis because we
support the notion that disease prevention (in general) should
start at the neighborhood and community levels.
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