The Laboratory for Remote Sensing and Environmental Change (LRSEC)
The Laboratory for Remote Sensing and Environmental Change (LRSEC)
An Interdisciplinary Research Group Using Remote Sensing and Geospatial Science to Understand Landscape Change
  • Home
  • Publications
  • Research Products
  • Team
    • Dr. Gang Chen
    • Chenyu Xing
    • Ravi Thapaliya
    • Rachel Caron
    • Justin Erlick
    • Austin Barbee
  • Prospective Students
  • Teaching
  • News

Latest News in LRSEC

  • Welcome Austin Barbee to join LRSEC October 3, 2024
  • Welcome Justin Erlick to join the lab September 16, 2024
  • Welcome Rachel to join the lab March 21, 2024

Contact Lab Director

Dr. Gang Chen
Address: McEniry 446, 9201 University City Blvd, Charlotte, NC 28223, USA (35°18'26"N 80°43'48"W)
Email: Gang.Chen 'at' charlotte.edu

Links

  • Department of Earth, Environmental and Geographical Sciences
  • College of Humanities & Earth and Social Sciences
  • University of North Carolina at Charlotte

A study on fine-scale human disturbance detection appears in the ISPRS Journal

May 17, 2021 by Gang Chen
Categories: Updates

Hu, T., Toman, E. M., Chen, G., Shao, G., Zhou, Y., Li, Y., Zhao, K., & Feng, Y. (2021). Mapping fine-scale human disturbances in a working landscape with Landsat time series on Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 176: 250-261.

Abstract:

Large fractions of human-altered lands are working landscapes where people and nature interact to balance social, economic, and ecological needs. Achieving these sustainability goals requires tracking human footprints and landscape disturbance at fine scales over time—an effort facilitated by remote sensing but still under development. Here, we report a satellite time-series analysis approach to detecting fine-scale human disturbances in an Ohio watershed dominated by forests and pastures but with diverse small-scale industrial activities such as hydraulic fracturing (HF) and surface mining. We leveraged Google Earth Engine to stack decades of Landsat images and explored the effectiveness of a fuzzy change detection algorithm called the Bayesian Estimator of Abrupt change, Seasonality, and Trend (BEAST) to capture fine-scale disturbances. BEAST is an ensemble method, capable of estimating changepoints probabilistically and identifying sub-pixel disturbances. We found the algorithm can successfully capture the patterns and timings of small-scale disturbances, such as grazing, agriculture management, coal mining, HF, and right-of-ways for gas and power lines, many of which were not captured in the annual land cover maps from Cropland Data Layers—one of the most widely used classificationbased land dynamics products in the US. For example, BEAST could detect the initial HF wellpad construction within 60 days of the registered drilling dates on 88.2% of the sites. The wellpad footprints were small, disturbing only 0.24% of the watershed in area, which was dwarfed by other activities (e.g., right-of-ways of utility transmission lines). Together, these known activities have disturbed 9.7% of the watershed from the year 2000 to 2017 with evergeen forests being the most affected land cover. This study provides empirical evidence on the effectiveness and reliability of BEAST for changepoint detection as well as its capability to detect disturbances from satellite images at sub-pixel levels and also documents the value of Google Earth Engine and satellite timeseries imaging for monitoring human activities in complex working landscapes.

Copyright © 2012-2025 Gang Chen, University of North Carolina at Charlotte. All rights reserved.
Skip to toolbar
  • Log In