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ABSTRACT
Spatial interpolation (SI) is currently one of the most common ways to
estimate wind speed (Ws). However, classic SI models either ignore the
complex geography [e.g. inverse distance weighting (IDW)], or demand
high computational resources (e.g. cokriging). This study aimed to
develop a simple yet effective SI model for estimating Ws in Eastern
Thrace of Turkey. This new method, named MIDW(Ws), is a modified IDW
through the integration of IDW with wind profile model, power law (PL),
representing the influence of land cover and topography on Ws. Terrain
features and elevation data of PL were obtained using normalized
difference vegetation index (NDVI) and digital elevation model (DEM),
respectively. Results showed superior and comparable performance of
MIDW(Ws) to standard IDW and ordinary kriging (OK) across all months of
year. Compared to ordinary cokriging (OCK) using DEM as covariate,
MIDW(Ws) generated better results in the arid–semiarid seasons (around
summer). Local complex atmospheric conditions during rainy seasons
(around winter) may have affected the performance of incorporating PL
with MIDW(Ws). Generally, the proposed MIDW(Ws) is simpler and easier
to implement compared to OCK. For landscape-scale projects, its high
computational efficiency and relatively robust performance show
potential to deal with large volumes of datasets.
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1. Introduction

Wind speed (Ws) is a key climatic variable of digital earth, considerably used in a range of fields, such
as climatology, oceanography, renewable energy, aerosol and pollutant transport, urbanization, agri-
culture, and disaster management (Morais et al. 2008; Curry, van der Kamp, and Monahan 2012; Yu
et al. 2012; Vahidnia et al. 2013; Lorente-Plazas et al. 2014; Lorente-Plazas et al. 2015). The speed of
wind has been discovered to be sensitive to the characteristics of local topography, surface roughness,
and land cover among others, which often vary from region to region and are of high fluctuations,
making the assessment of wind energy a challenging task (Curry, van der Kamp, and Monahan 2012;
Philippopoulos and Deligiorgi 2012; Lorente-Plazas et al. 2014).

Spatial estimation of Ws mainly relies on spatial interpolation (SI), which generalizes Ws obser-
vations from a limited number of meteorological stations to the other locations with no prior Ws
measurements (Luo, Taylor, and Parker 2008; Joyner et al. 2015; Mentis et al. 2015). Popular SI
models include inverse distance weighting (IDW), kriging and cokriging (Apaydin, Sonmez, and
Yildirim 2004; Cellura et al. 2008b; Joyner et al. 2015). While easy to comprehend and implement,
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IDW typically demonstrates inferior performance compared to the more sophisticated geostatistical
methods of kriging and cokriging (Apaydin, Sonmez, and Yildirim 2004; Luo, Taylor, and Parker
2008). Especially for cokriging, it has a unique feature of incorporating covariates [e.g. ancillary
data of digital elevation model (DEM)] to estimate Ws. Cokriging constantly shows superior per-
formance across topographies, although its computation is relatively intensive (Luo, Taylor, and Par-
ker 2008; Joyner et al. 2015).

For a landscape-scale estimation of Ws, a dilemma is often caused by the desires to improve model
accuracy while reducing the needs of computational resources (e.g. to lower processing costs and
increase computation efficiencies). Hence, an important question needing to be addressed is whether
the accurate spatial estimation of Ws can be achieved through an integration of a simple, yet effective
SI model with valuable ancillary data (a strategy proven effective in cokriging) that can be easily and
economically derived from Earth observation sensors. Based on the aforementioned classic SI models,
one potential solution is to modify IDW, so it can incorporate covariates inWs estimation. In order to
achieve comparable or even superior performance to kriging and cokriging, such covariates should
not only reflect the influence from topography (e.g. using DEM), but also represent other landscape
characteristics that may influence the speed of wind (e.g. surface roughness and land cover). We
noticed that all those factors are well simulated in wind profile models, such as the log-linear law
(Log LL), logarithmic law (Log L) and power law (PL) (Patel 2006; Ozgonenel and Thomas 2012;
Schallenberg-Rodriguez 2013). Among them, PL (also known as the exponential Hellmann law) is
one of the most popular and useful due to its well-balanced simplicity and accuracy (Schallenberg-
Rodriguez 2013; Sigal et al. 2015). Earth observation data (e.g. satellite imagery and products) with
increased quality and decreased costs can be used to parameterize PL (Cellura et al. 2008a). Hence,
our assumption was that the integration of IDW and PL can substantially improve the performance
of the traditional IDW-based Ws estimation while retaining model simplicity.

The main objective of this research was to develop a novel SI model that can be efficiently used for
landscape-scale, spatially explicit Ws estimation with satisfactory accuracies. Based on the idea of
incorporating PL into IDW, theWs estimation model was given a name modified IDW –MIDW(Ws).
In this study, it was compared with standard IDW, and two popular geostatistical methods for SI of
climate data – ordinary kriging (OK) and ordinary cokriging (OCK) (Apaydin, Sonmez, and Yildirim
2004; Luo, Taylor, and Parker 2008). Since Ws is a typical climatic variable with significant seasonal
variations, we further analyzed the dynamics of model performance over all the 12months of the year.

2. Data

2.1. Study area

The study area of Eastern Thrace is located in northwest Turkey between 26°0′ and 29°2′ eastern
meridians and 40°0′ and 42°2′ northern parallels, covering an area of 23,764 km2. The area is sur-
rounded by the Black Sea in the north, the Aegean Sea in the west, and the Marmara Sea in the
south. In the north, Strandzha (Star) Mountains are parallel to the Black Sea coast with its highest
elevation over 1000 m. In the south, the Ganos and Koru Mountains are up to 945 m. Low hills cover
the rest of the area (Thrace Development Agency 2015). According to the geographical conditions,
three different regional climates, Continental, Black Sea, and Marmara, are prevalent over the area
(Figure 1; Sensoy et al. 2008). The continental climate in Eastern Thrace has hot summers and cold
winters; dry forests and steppes are the general natural vegetation (Turkish State Meteorological Ser-
vice 2003; Sensoy et al. 2008). Marmara climate is a transition climate between Continental, Black
Sea, and Mediterranean climates. Specifically, Marmara climate’s winter is not as cold as the Con-
tinental and not as warm as the Mediterranean climate; and its summer is not as rainy as the
Black Sea and not as dry as the Continental climate (Turkish State Meteorological Service 2003; Sen-
soy et al. 2008). Accordingly, the typical vegetation living in the Marmara climate is Mediterranean
origin scrub at low altitudes, and Black Sea origin moist forests at the north-facing aspects of high
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altitudes (Turkish State Meteorological Service 2003; Sensoy et al. 2008). The Black Sea climate exists
along the Black Sea coast of the study area and the northern aspects of the mountains. All seasons of
the Black Sea climate are rainy and the seasonal variation of air temperature is low compared to the
other climates; its natural vegetation is moist broadleaf forests in coastlines and coniferous forests at
high elevations (Turkish State Meteorological Service 2003; Sensoy et al. 2008). The average, mini-
mum, maximum, and standard deviation of four long-term climatic variables (i.e. Ta: air tempera-
ture, Pt: precipitation total, RH: relative humidity, andWs) obtained by Turkish State Meteorological
Service since 1970s in Eastern Thrace are presented in Table 1.

Figure 1. The region’s climatic zones and the distribution of in situ climatological stations over a Landsat-5 TM true color (bands 3,
2, 1) image covering the Eastern Thrace region.
Source: Sensoy et al., 2008; Ozelkan et al., 2015.
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2.2. Field data

Monthly Ws climate data acquired from 27 in situ climatological stations over the Eastern Thrace
region of Turkey were used in this study (Figure 1). In fact, there were more stations in the region;
however, not all of them consistently collected measurements over long terms. Only those having at
least 10 years of Ws data were selected to reflect the climate. Although the time periods of measure-
ments varies slightly across stations due to data availability, local climatic, and land-cover conditions
did not experience major changes. The long-term annual average Ws values were 1.6 m/s, 2.8 m /s,
and 5.0 m/s for the Continental, Marmara, and Black Sea climates, respectively. The minimum and
maximum monthly average values observed in the study area were 1.0 m/s and 8.1 m/s, respectively,
with a standard deviation of 1.5 m/s.

2.3. Remote sensing data and pre-processing

The study area corresponds to the extent of two Landsat images scenes (path/row: 181/31 and 32). A
total number of 432 Landsat-5 (TM) and Landsat-7 (ETM +) NDVI images over the study area were
acquired between January 2000 and January 2012 from the United States Geological Survey (USGS)
data portal. All the Landsat surface reflectance images were obtained at a 30 m spatial resolution, and
have been atmospherically and geometrically corrected by NASA. A remote sensing vegetation
index, NDVI (Normalized Difference Vegetation), was used to express terrain features in PL and
was calculated as follows:

NDVI = (lNIR − lRED)/(lNIR + lRED), (1)

where lRED is the red and lNIR is the near infrared spectral reflectance. NDVI not only represents the
abundance of live vegetation on earth surface, but can also be linked to the surface roughness of vary-
ing types of land-cover classes (Liu, Stanturf, and Goodrick 2010; Lee and Kim 2012; Bae and Ryu
2015; Walker, de Beurs, and Henebry 2015). Such features can contribute to the calculation of Ws
and will be described in detail in Section 3.3. To be consistent with the monthly in situWs measure-
ments, monthly NDVI images were generated by averaging NDVI images of the same months. To
reduce spectral noises, NDVI images were smoothed using a mean filter with a small kernel of 3 × 3
pixels. Larger kernels (e.g. > 3 × 3 pixels) were not utilized because they dramatically reduced the
variation of NDVI values in our tests. An example of a July NDVI map is presented in Figure 2.

DEM over the same area was acquired directly from the ASTER Global Digital Elevation Model
(ASTER GDEM) that has a 30 m spatial resolution (NASA 2015), the same as the resolution of
NDVI imagery used in this study (Figure 2). DEM was used to extract altitude values, with more
details described in Section 3.3.

3. Methodology

In this section, we present the basic principles of IDW, OK, and OCK, as well as a detailed descrip-
tion of the proposed MIDW(Ws) model, an integration of the standard IDW and a wind profile model
PL. For each of the four types of models, we analyzed the impact of seasonal variation on model per-
formance through comparing the model results across all the 12 months of the year. Because NDVI

Table 1. The average, minimum, maximum, and standard deviation of long-term (between 1970 and 2014) climatic variables in
Eastern Thrace (Ta: air temperature, Pt: precipitation total, RH: relative humidity, and Ws: wind speed).

Ta (°C) Pt (mm) RH (%) Ws (m/s)

Average 13.1 47.8 73.0 2.9
Minimum 2.2 5.2 55.8 1.0
Maximum 25.0 121.7 86.9 8.1
Standard deviation 7.1 21.4 7.0 1.5
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was utilized in MIDW(Ws), and it varied with the seasonal change of vegetation phenology and land
cover (e.g. snow cover in winter), we further evaluated the performance of MIDW(Ws) in two scen-
arios: (i) using NDVI to assist in estimating Ws of the corresponding month, and (ii) applying NDVI
from only one of the 12 months to consistently estimate Ws across the year. The reason for such
testing was due to the fact that seasonal climatic variation (e.g. harsh weather conditions with fre-
quent precipitation especially in wet season between mid of autumn and mid of spring) may change
the role or quality of NDVI in Ws estimation. So, using NDVI from one single season with stable
atmospheric conditions may be a better way to characterize terrain features.

3.1. Inverse distance weighting

As a deterministic SI method, IDW is based upon the principle that the value of estimated point is
more correlated with the value of a closer known point than a far one (Tobler 1970; Apaydin, Son-
mez, and Yildirim 2004). The influence of known point declines by increasing distance between the
estimated and known points, and such influence is defined as weight that is accepted as inversely
proportional to the square of the distance (Hartkamp et al. 1999). The IDW equation is given as fol-
lows.

Ẑ(u0) =
∑N

i=1 Z(ui)wi∑N
i=1 wi

(2)

with i = 1, . . . , N and wi = d−p
0,i , i = 1, . . .N.

where u0 is the location of an estimated point, and ui(i = 1, . . .N) are the locations of known
points (i.e. field measurements). The estimated value Ẑ(u0) is the weighted average of N measured
values Z(ui). The weight or influence of each known data is calculated as wi = d−p

0,i , where w is
weight, d is the Euclidian distance between the estimated and the known points (i), and p is expo-
nential power parameter. Lloyd (2005) found that if the value of the p increases, the estimation result
becomes more similar to the value of the closest known point. Thus, p is usually set to 2, which was
also used in our study.

Figure 2. An example of remote sensing products, NDVI and DEM, used in this study.
Source: USGS 2014; NASA 2015.
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3.2. Ordinary kriging and cokriging

As a geostatistical SI method, kriging is similar to IDW in a way that they derive unknown values
through calculating the weighted mean of measured/known values (Lloyd 2005). However, during
the weight computation, kriging considers not only the distance, but also the spatial distribution
of the measurement points that contain spatial autocorrelation (Johnston et al. 2001). All types of
kriging are deemed as basic linear regression estimators (Mutua and Kuria 2012). They differ
from each other in the assessment of mean values (i.e. trend component). For example, OK assumes
that the mean values of known and estimated points are equal and constant in the local neighbor-
hood of each estimated point (Garška and Krūminiene 2004). A typical equation of OK is given as
follows:

Z
^
(u0) =

∑N
i=1

lOKi (u)Z(ui)

with
∑N
i=1

lOKi (u) = 1,

(3)

where li are the weights assigned to known values Z(ui) such that their total is 1 and the computed
weights minimize the estimation variance s2

E(u) = Var{Z
^
(u0)− Z(ui)} under the unbiasedness

constraint of the estimator E{Z
^
(u0)− Z(ui)} = 0 (Goovaerts 2000).

An empirical semivariogram model is often built to obtain the variance of weights (li) in different
distances to solve Equation (4) (Luo, Taylor, and Parker 2008).

gi,j = 0.5E[(Z(ui)− Z(uj))
2], (4)

where gi,j is the semivariance between data points i and j. Here, we used the typical spherical semi-
variogram model. For detailed information about kriging and semivariogram models, the readers
may refer to Goovaerts (2000); Sertel, Kaya, and Curran (2007); Wang, Li, and Christakos (2009).

Cokriging is a multivariate version of kriging, which uses information from additional covariates
(i.e. ancillary data) to assist in model estimation (Goovaerts 2000). Cokriging regards the spatial
cross autocorrelation between primary and secondary/ancillary variables to improve model accu-
racy, and it is typically utilized when the distribution or the number of primary variable recording
locations (i.e. Ws for this study) is insufficient (Zhang, Li, and Travis 2009). OCK was tested in this
study using DEM as a secondary variable.

Z
^
(u0) =

∑N1

i1=1

lOCKi1 (u)Z(ui1 )+
∑N2

i2=1

lOCKi2 (u)Z(ui2 ),

with
∑N1

i1=1

lOCKi1 (u) = 1, and
∑N2

i2=1

lOCKi2 (u) = 0,

(5)

Both OK and OCK were performed in ArcGIS (Redlands, CA, USA). For parameterizing semi-
variogram, the trial and error method was used to manually determine the best parameters (leading
to lowest model errors): lag = 14.82 km, number of lags = 12, nugget = 1.24 (m/s)2, partial sill = 0.97
(m/s)2, and range = 110.42 km.

3.3. Modified inverse distance weighting (MIDW(Ws))

Observations of Ws at climate stations reflect varying characteristics of local topography, surface
roughness and land cover. To estimate an unknown Ws of a specific point, all the observation
data should be normalized by taking into account those effects before the interpolation process
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can be accurately conducted in SI. Hence, the first step of MIDW(Ws) was the normalization of all the
known Ws (at 27 stations for our study) through the use of a wind profile model PL. Simple yet use-
ful PL expresses the vertical wind variation according to the difference between estimated and refer-
ence Ws in altitude, surface roughness, and land cover (Sahin 2004; Schallenberg-Rodriguez 2013;
Sigal et al. 2015). The formula of PL is given as follows.

Ws(est) = Ws(ref ) × h(est)
h(ref )

( )a

, (6)

where Ws(est) and Ws(ref ) are the Ws of estimated and reference (i.e. known measured stations
data) points, respectively; h(est) and h(ref ) are the altitude of estimated and reference points, respect-
ively; and α is Hellman coefficient signifying surface roughness and land-cover types. In MIDW(Ws),
PL was fed by DEM and NDVI to derive h and α, respectively. Specifically, h was directly transferred
to PL from DEM. NDVI values were manually matched to popular α values presented by Patel
(2006) (Table 2). To be sure about matching, NDVI values were examined all over the study area
by considering all terrain types mentioned by Hellman.

The second step of MIDW(Ws) was to integrate the normalized Ws with IDW. Specifically, all the
normalized Ws observations were used to replace the original known point data measured at refer-
ence stations, and were fed to the standard IDW formula. The formula of MIDW(Ws) is given as fol-
lows.

Ws(u0) =
∑N

i=1 Ws(u0,i) wi∑N
i=1 wi

(7)

with Ws(u0,i) = Ws(ui)× h(u0)
h(ui)

( )a

, i = 1, . . . , N and wi = d−p
0,i , i = 1, . . .N.

where u0 and ui are the locations of estimated (Ws(u0,i)) and known Ws, respectively. Ws(u0,i) is
the result of PL that uses known/reference data Ws(ui), estimated and reference points’ h values as
h(u0) and h(ui), respectively. Similar to the standard IDW, the weight or influence of each known
point was calculated as wi = d−p

0,i , where w represented weight, d was Euclidian distance, and p
was set to 2. A simple computation example to illustrate the principle of the developed MIDW(Ws)

is presented in Figure 3. In this example, Ws, h, and NDVI values were available for the three sample
reference stations (N = 3) within three image pixels. The corresponding α values of NDVI can be
found in Table 2. The distances between the reference and the estimated pixels were d0,1 (3000
m), d0,2 (5000 m), and d0,3 (5000 m), respectively. Following Equation (7), the computation for esti-
mating an unknown Ws is illustrated in Figure 3.

3.4. Model calibration and validation

Among all the in situmeasurements collected from the 27 stations, Ws data from 21 stations (78% of
the data) were used for model calibration, and the remainder was used for validation. Both cali-
bration and validation stations were selected on the basis that they both reflected the three main
types of regional climate in the study area. The performance of models was compared using three

Table 2. Land-cover classes, Hellman coefficient (α) values (Patel 2006), and
the corresponding NDVI values.

Terrain Type α NDVI

Lakes, ocean, and smooth hard ground 0.10 −1.000–0.000
Foot-high grass on level ground 0.15 0.251–0.300
Tall crops, hedges, and shrubs 0.20 0.301–0.600
Wooded country with many trees 0.25 0.601–1.000
Small town with some trees and shrubs 0.30 0.201–0.250
City area with tall buildings 0.40 0.001–0.200

INTERNATIONAL JOURNAL OF DIGITAL EARTH 7
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criteria of root mean square error (RMSE), Pearson’s correlation coefficient (r), and significance F
(SF, significance probability of ANOVA) that were generated using the validation data, accounting
for 22% of all the data.

4. Results and discussion

4.1. Influence of monthly NDVI on MIDW(Ws)

A total of 156 MIDW(Ws) models were developed for the two scenarios described at the beginning of
Section 3, i.e. using the same month of NDVI for estimating Ws, and applying only one month of
NDVI to consistently estimate Ws across the year. Through comparisons of the modeling results,
July NDVI was discovered to be the best to use, because its corresponding models outperformed
all the other ones in most cases, i.e. 9 of the 12 months (Figure 4). We also found that using
NDVI acquired in or near summer (e.g. May, June, and August) improved the performance of
MIDW(Ws) than those using NDVI collected close to winter (Figure 4). The highest model errors
were generated with December NDVI that had the highest precipitation and cloudiness with lowest
insolation for our study area (Ozelkan et al. 2015). The distribution and number of NDVI images,
long-term monthly average rainy days, and long-term daily average insolation hours for each month
of study are shown in Figure 5. In addition, monthly NDVI in Figure 4 refers to the aforementioned
first scenario described at the beginning of Section 3. While the corresponding models’ performance
were superior to many others developed for the second scenario, they were not as good as the

Figure 3. The illustration of MIDW(Ws) computation. The gray pixels overlap the in situ climate stations and the others express
estimated pixels. A representative computation is presented for a sample pixel.
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MIDW(Ws) models using July NDVI as an input, with a larger error of 0.47 m/s on average across the
year.

Theoretically, it is more reasonable to use NDVI to represent terrain surface conditions of the
corresponding months and estimate Ws (i.e. scenario one). However, our results were not consistent

Figure 4. The values of root mean square error (RMSE) values derived from MIDW(Ws) using NDVI of various months. Monthly NDVI
refers to the NDVI values calculated in the same month as shown on the x axis.

Figure 5. The distribution of number of NDV images, long-termmonthly average rainy days, and long-term daily average insolation
hours for each month.
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with such an assumption. Potential reasons may include: (i) the study area of Eastern Thrace is sur-
rounded by the Black Sea, the Aegean Sea, and the Marmara Sea (Figure 1). The high moisture in
winter and early spring often causes fog and haze (UMBC 2015). Although all the remotely sensed
data have been atmospherically corrected, local complex atmospheric distortions may not be com-
pletely removed. Hence, NDVI values possibly contained errors; (ii) the conversion Table 2 is basi-
cally an experience model linking land-cover types and NDVI. However, the frequent precipitation
in or near winter could reduce the heterogeneity of the local terrestrial surface. While land cover may
not change, NDVI values have been influenced by climate. Hence, Hellman coefficients may not be
accurately derived.

4.2. Comparison among IDW, OK, OCK, and MIDW(Ws)

According to the derived RMSEs (Table 3), MIDW(Ws) was better than IDW for nine months
(between April and December), and for the rest the error of MIDW(Ws) was slighter higher with
an average difference of 0.02 m/s. The performance of MIDW(Ws) was found to be superior to
OK in all cases. Compared to OCK fed with DEM, MIDW(Ws) generated better results in five months
(May, June, July, August, and September). For the rest of the year (except October), the results
from MIDW(Ws) and OCK were actually similar with an average difference of 0.06 m/s. Overall,
the monthly best results were either produced by OCK or MIDW(Ws). According to r and SF
(Figure 6), MIDW(Ws) generated more correlated results than the others for six months (May to
October). For the rest of the year, OCK had superior performance. In the months when MIDW(Ws)

generated more correlated results, r and SF values were better than OCK with an average difference
of 0.16 and 0.14, respectively. On the other hand, in the months when OCK generated more corre-
lated results, r and SF values were better than MIDW(Ws) with an average difference of 0.13 and 0.08,
respectively. These show that in general MIDW(Ws) generated more robust and correlated results
than OCK. For MIDW(Ws), the best result was generated for August with r = 0.94 and SF = 0.01
(99% confidence level). IDW and OCK produced most correlated results in March, with r = 0.86
and 0.91 and SF = 0.03 and 0.01 (97% and 99% confidence level), respectively. OK performed the
best in August with r = 0.87 and SF = 0.03 (97% confidence level).

In general, the results in Figures 4 and 6 suggest that MIDW(Ws) and OCK are better options for
Ws estimation in our study area, these were followed by the use of IDW and OK. Compared to OCK,
MIDW(Ws) generated more accurate results in arid and semiarid seasons (around summer), while
OCK was better around the rainy seasons (around winter). As previously discussed in Section 4.1,
fog and haze in winter and spring (e.g. November to April) possibly reduced the quality of the remo-
tely sensed NDVI data. Meantime, because the atmospheric events (e.g. precipitation) are more fre-
quent and stronger than those in other seasons, it is also possible that the texture and pattern of

Table 3. Monthly root mean square error (RMSE) values for Ws estimation from MIDW(Ws), IDW, OCK, and OK.

Month

RMSE (m/s)

MIDW(Ws) IDW OCK OK

1 0.54 0.52 0.46 0.61
2 0.49 0.48 0.43 0.58
3 0.43 0.41 0.32 0.56
4 0.31 0.48 0.30 0.45
5 0.32 0.54 0.35 0.53
6 0.27 0.47 0.37 0.46
7 0.25 0.50 0.36 0.52
8 0.22 0.37 0.28 0.36
9 0.22 0.52 0.29 0.53
10 0.78 0.91 0.35 0.99
11 0.42 0.43 0.36 0.48
12 0.41 0.46 0.35 0.59

Note: Numbers bold and underlined represent the lowest RMSE for each month.
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terrestrial surfaces are of high fluctuations from time to time, leading to high variations in NDVI
over the same areas. In contrast, arid and semiarid seasons (e.g. May to September) allowed the het-
erogeneity of nature to be better observed by satellite sensors (Ji and Peters 2003; Gopinath et al.,

Figure 6. The distribution of root mean square error (RMSE), Pearson’s correlation coefficient (r), and significance F (SF) values
between known and estimated Ws using MIDW(Ws), IDW, OK, and OCK for each month of the year.
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forthcoming). Consequently, NDVI played a more apparent role in Ws estimation using MIDW(Ws)

that outperforms OCK in arid and semiarid season but not in others. Sample Ws maps generated
using MIDW(Ws), IDW, OK, and OCK are presented in Figure 7. Clearly, the results from OK
and IDW lacked spatial variation, and the maps of all methods contained a Bull’s Eye effect in differ-
ent ratios, which refers to unnatural neighboring zones around meteorological stations (Johnston
et al. 2001). In other words, MIDW(Ws) and OCK allow fine-scale pixel by pixel examination of
the study area by using ancillary remote sensing data. While the OCK map contained higher vari-
ation with the use of DEM, boundaries of zones were not as natural as those on the MIDW(Ws)

map, due to the integrative use of land surface characteristics (i.e. NDVI and DEM). Those are
important, because our study area is complex both in land cover with cities, agriculture lands, forests,
etc. and in topography from the sea level to an altitude higher than 1000 m.

We noticed that OCK slightly outperformed MIDW(Ws) for most winter and spring seasons.
However, OCK calculated variograms led to an intensive computation overhead, but our model
integrates simple IDW and the PL theory dramatically improved the computational efficiency.

Figure 7. A sample of Ws spatial interpolation maps of MIDW(Ws), IDW, OCK, and OK for July.
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For large-scale projects, MIDW(Ws) would be a viable solution for estimating Ws, if the compu-
tational resources are limited with short time frames. Even if those limitations do not exist,
MIDW(Ws) possibly remains the best solution among IDW, OK, and OCK for most summer and
fall seasons (i.e. arid and semiarid seasons) according to this study. Another fact that needs to be
aware of is that, classic SI methods produce values within a controlled range (i.e. with upper and
lower limits) assigned by interpolated dataset’s minimum and maximum values or the variogram’s
(Ozelkan et al. 2015). The integration of PL with SI can generate estimates with an unrestricted range
(see example in Figure 7) that may help to obtain real and microclimate values.

According toWang et al. (2012), the accuracy of a SI is affected by the property of target, sampling
scheme, and estimator (i.e. the procedure used to calculate an estimate). In our study, the emphasis
was the comparison of SI methods (i.e. estimators). We also noted that local climate and land surface
characteristics (i.e. the property of target) may have affected the results via influencing the estimation
of NDVI. We did not discuss about the sampling scheme, because all the field stations have been set
up following a random sampling strategy and cannot be changed.

Finally, while the application of land cover facilitated the estimation of Ws, the use of NDVI may
not be the best way to represent landscape conditions due to severe weather events and the complex
land surface structures. Future research will incorporate one or more remote sensing variables to bet-
ter represent landscape conditions while mitigating the impact of atmospheric events.

5. Conclusion

This study proposed a new and simple SI method for spatial estimation of Ws, MIDW(Ws), which is
IDW integrated with wind power law using NDVI and DEM to represent land use, surface rough-
ness, and elevation. The eastern Thrace of Turkey that has complex geography was used as a case
study area to evaluate our proposed model and several other popular ones, including IDW, OK,
and OCK. The main findings of our study are listed as follows.

. Through the comparison of MIDW(Ws) results across the year, a consistent application of July
NDVI was found to achieve higher accuracies than using NDVI of individual months.

. MIDW(Ws) results were significantly better than those of IDW in semiarid and arid seasons, and
they were comparable to each other in the rainy seasons.

. MIDW(Ws) was found to have superior performance to OK across all the tested 12 months of the
year.

. MIDW(Ws) generated better results in the arid and semiarid seasons (around summer), while
OCK was better in the rainy seasons (around winter). Local complex atmospheric conditions
during rainy seasons may have affected the performance of incorporating NDVI in MIDW(Ws)

for Ws estimation.
. Although the model errors of MIDW(Ws) for the rainy season Ws estimation were higher than

that of OCK (e.g. 0.04 m/s on average), MIDW(Ws) is simpler and easier to implement compared
to OCK. Its advantages of high computational efficiency for big data processing can benefit large-
scale Ws estimation.

. In contrast to the classic SI methods, MIDW(Ws) can produce estimates with an unrestricted range
that may allow a more accurate estimation of Ws in areas of complex land cover and topography.

The results show that the simple but effective proposed SI method MIDW(Ws) can be a good and
allowed alternative treatment for climatology, oceanography, renewable energy, aerosol and pollu-
tant transport, urbanization, agriculture, disaster management, and may other fields of digital
earth that interact with wind speed. Hence, the proposed method facilitates efficient and accurate
management of the digital information of the Earth (Vahidnia et al. 2013), as well as the multidisci-
plinary collaboration between Earth, space, and information sciences to analyze natural and human
sources phenomena (ISDE 2015).
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