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When Big Data are Too Much: Effects of LiIDAR
Returns and Point Density on Estimation
of Forest Biomass

Kunwar K. Singh, Gang Chen, John B. Vogler, and Ross K. Meentemeyer

Abstract—Analysis of light detection and ranging (LiDAR) data
is becoming a mainstream approach to mapping forest biomass
and carbon stocks across heterogeneous landscapes. However,
large volumes of multireturn high point-density LiDAR data
continue to pose challenges for large-area assessments. We are
beginning to learn when and where point density can be reduced
(or aggregated), but little is known regarding the degree to which
multireturn data—at varying levels of point density—improve
estimates of forest biomass. In this study, we examined the com-
bined effects of LiDAR returns and data reduction on field-
measured estimates of aboveground forest biomass in deciduous
and mixed evergreen forests in an urbanized region of North
Carolina, USA. We extracted structural metrics using first returns
only, all returns, and rarely used laser pulse first returns from
reduced point densities of LIDAR data. We statistically analyzed
relationships between the field-measured biomass and LiDAR-
derived variables for each return type and point-density combi-
nation. Overall, models using first return data performed only
slightly better than models that utilized multiple returns. First-
return models and multiple-return models at one percent point
density resulted in 14% and 11% decrease in the amount of
explained variation, respectively, compared to models with 100%
point density. In addition, variance of modeled biomass across all
point densities and return models was statistically similar to the
field-measured biomass. Taken together, these results suggest that
LiDAR first returns at reduced point density provide sufficient
data for mapping urban forest biomass and may be an effective
alternative to multireturn data.

Index Terms—Aboveground biomass, data reduction, large-
area assessments, light detection and ranging (LiDAR), multiple
linear regression (MLR), point density and returns, urban forest.
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I. INTRODUCTION

CCURATE assessment of large-area aboveground for-

est biomass is essential for developing effective carbon
management strategies and understanding the impact of cli-
mate change on carbon stocks at regional to global scales [1].
Light detection and ranging (LiDAR) remote sensing is being
increasingly applied for such assessment with a high degree
of accuracy [3], [4]. Compared to other sensors, LiDAR has
the ability to capture three-dimensional (3-D) forest structure,
making it a key data source for biomass mapping [15]. With
recent advancements in sensor technology, the point density
and number of returns per pulse generated by discrete-return
LiDAR systems have grown exponentially. While LiDAR facil-
itates very accurate representations of forest structure from the
stand to the individual tree level, data procurement costs remain
high, and processing voluminous LiDAR data for large-area
assessments of forest biomass remains a challenge.

To overcome these challenges, large-area biomass estima-
tion is typically based on two LiDAR data reduction strategies.
First, LiDAR data are often collected for a portion of the study
area, and then derived biomass estimates are extrapolated to
the entire site using sampling theories and/or relatively low-
cost data sets, such as satellite optical imagery [2], [3]. In such
cases, plot-level field-measured biomass is regressed against the
statistics derived from LiDAR data [14]. Although plot-level
biomass estimates are typically accurate, the bias in sample
selection and the models used for plot-to-landscape generaliza-
tion can introduce large errors [31]. Particularly, urban environ-
ments with high degrees of spatial heterogeneity and diversity
are problematic. Second, researchers have evaluated reducing
point density in LiDAR data to help lower procurement costs
and computational overhead while retaining spatial variation in
forest structure over large areas [12], [26]. However, identifying
a cut-off point for data resampling remains a challenge as point
density varies from tile to tile and requires additional thorough
analysis.

Another rarely discussed data reduction strategy uses a
smaller number of returns per emitted laser pulse. Discrete-
return LiDAR sensors are capable of recording up to five
returns per pulse [24]. Each return represents an individual
point in the LiDAR data with an associated return number
and unique id. The first and last returns are normally asso-
ciated with the highest (e.g., canopy top) and lowest (e.g.,
ground surface) landscape features, respectively, while interme-
diate returns define the middle structure of vegetation. Ideally,
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multitiered forest structures, like those typically found in urban
forests, may have many intermediate returns as compared to an
even-aged and well-managed forest stand [29]. Therefore, mul-
tiple return LiDAR data have become a natural choice in many
studies for achieving high accuracy biomass estimates [5], [17],
[22], [25], [29].

Theoretically, as few as one LiDAR point representing the
tree height and a few points representing the shape and diame-
ter of a tree crown, all from the first return should be sufficient
to retain model performance in biomass estimation. This war-
rants questioning the advantages of multiple LiDAR return
data, especially the intermediate returns, for estimating forest
biomass at large extents. Studies [4], [10], [14] have found that
metrics derived from the LiDAR first returns adequately esti-
mate or improve biomass compared to estimates based on all
returns. However, these studies were not only limited to leaf-on
LiDAR data and natural forested landscapes of small extents but
also rarely addressed the “first return of each laser pulse” (here-
after referred to as “first-in-pulse” return) for estimating urban
forest biomass. First-in-pulse returns are those returns labeled
as first return for a pulse but not included in the tile. This hap-
pens when LiDAR data are clipped into tiles to overcome the
complexities of a single LiDAR file with the large data volume
[19]. While reducing either LIDAR point density or the number
of returns has been evaluated, we still lack a basic understand-
ing about how the accuracy of biomass estimation is affected
by jointly tuning these two LiDAR variables. Is it possible that
their cumulative impact is greater than the impact of changing
one variable only?

In this study, we evaluated the effects of the number of
LiDAR returns and LiDAR point-density reduction on the esti-
mation of aboveground biomass of highly fragmented and
spatially heterogeneous urban forests of Mecklenburg County,
North Carolina, USA. We extracted structural metrics using all
returns, first returns, and first-in-pulse from original LiDAR
data and reduced point densities (80%, 60%, 40%, 20%, 10%,
5%, and 1% samples) of the original LiDAR data. We used
multiple linear regression (MLR) to establish statistical rela-
tionships between field-measured biomass and LiDAR-derived
predictor variables (PVs) for each return and point-density
combination. We compared the performance of biomass models
developed for each return category across the range of reduced
point densities. Finally, we compared the modeled biomass
estimates with field-measured biomass.

II. MATERIALS AND METHODS
A. Study Area

This study focuses on the urban forests of Mecklenburg
County located in the center of the Charlotte Metropolitan
Region of North Carolina (Fig. 1). Forested landscapes in the
area are primarily oak-hickory-pine forests that have devel-
oped on former timber plantation sites and through natural
regeneration on abandoned farmland. The southern Piedmont
physiographic region is characterized by gently rolling topogra-
phy. Continued urban growth and the inaccessibility of the high
proportion of privately owned land in the region [20] make it
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even more meaningful to study the utility of LiDAR data for
efficient assessment of urban forest biomass.

B. Field Sites and Plant Measurements

We collected field data at 70 forested sites along urban-
rural gradients of the study area from 2010 to 2012 as part
of the Charlotte urban long-term research areas exploratory
(ULTRA-Ex) study. At each site, we established three to five
randomly located, 11.5-m fixed-radius field plots by defin-
ing a center point and recording coordinates using a Garmin
GPSMAP 62s device (412 feet accuracy). Within each 415 m?
plot, we measured the diameter of all plants greater than 5 cm
at breast height, and their geographic coordinates, merchantable
height, species’ name and type (deciduous vs. coniferous), and
predominant land-cover type [26].

C. Field-Measured Biomass Estimation

We used [13] allometric equation (1) to estimate biomass
at plot level using field-based dbh and species group parame-
ters (Table I). First, we grouped field-observed tree species into
hardwood and softwood species. Second, we applied species
group parameters with field-based dbh to estimate individual
tree biomass. Finally, the calculated biomass of each tree was
aggregated at plot level followed by conversion to a tons per
hectare unit

bm = Exp (6o + B1 * In (dbh)) (1)

where bm is total aboveground biomass (kg dry weight), Exp
is the exponential function, dbh is the diameter at breast height
(cm), In is the natural log, and 5y and 3; are parameters for
hardwood and softwood tree species groups.

D. LiDAR Data Processing and Extraction of Return-Based
Metrics

We obtained leaf-off multiple return airborne LiDAR data
from the GIS mapping and project services of Charlotte-
Mecklenburg County government in the state plane coordi-
nate system (NC FIPS 3200, NAD 1983, meters). A total of
1896 tiles cover the study area with each tile having dimen-
sions 914.40 m x 914.40 m. Pictometry International Corp.
(Rochester, New York, USA) acquired the LiDAR data over
six missions between April 11 and 14, 2012, using an Optech
ALTM Gemini 3100 LiDAR system. The sensor recorded four
returns with an average point spacing of 1 m between any two
neighboring points. We selected 79 LiDAR tiles (several of
our 70 field plots required two tiles for complete coverage) for
further processing to derive structural metrics.

We merged tiles where necessary to provide seamless cov-
erage of each field plot and then clipped the LiDAR data to
each plot using a 12-m radius buffer around plot centers. We
applied a 1-m resolution digital elevation model derived from
the last returns of LiDAR to remove topographic effects. We
then reduced the original LiDAR data (100%) to 80%, 60%,
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Fig. 1. Study area. (a) Mecklenburg County, North Carolina, USA. (b) Distribution of forest cover and field plots across the county with an overlay of LiDAR tiles.

TABLE 1
PARAMETERS USED FOR ESTIMATING FIELD-MEASURED ABOVEGROUND
BIOMASS FOR ALL HARDWOOD AND SOFTWOOD SPECIES

Parameters

. 2
Species group B B, R
Soft maple/birch -1.9123 2.3651 0.958

Hardwood Mixed hardwood —2.4800  2.4835 0.980
Hard maple/oak/hickory/beech  —2.0127 2.4342 0.988

Sottwood Cedar/larch —2.0336 22592 0.981
Pine —2.5356 2.4349 0.987

40%, 20%, 10%, 5%, and 1% point densities using the “percent-
age of the total points” reduction algorithm [33] (Figs. 2 and 3).
This produced eight LiDAR datasets for each return category,
including 100% data and seven sets of reduced point densities
(see [26], [27] for full description of data reduction method).
Next, we selected 37 metrics commonly identified in previ-
ous research [6]—[8], [10], [26] as the best predictors of biomass
(Table II).We extracted these plot-level tree metrics from the
eight LiDAR datasets using three LiDAR return combinations:
all returns, first returns, and first-in-pulse. We used the height

range of 1.5-35 m to exclude understory vegetation (<1.5 m)
and objects taller than the trees (>35 m). The metrics extraction
process produced 24 sets of plot-level tree metrics.

E. Data Analysis and Model Evaluation

We employed MLR to analyze the effects of LIDAR returns
and point density on biomass estimation by establishing the
linear statistical relationship between field-measured biomass
and selected PVs across the datasets. First, we analyzed the
median and mean of field-measured biomass to identify out-
liers (a median value lower than the mean suggests the presence
of outliers). Second, we used scatterplot matrices to assess the
collinearity of selected PVs. We also used logarithmic transfor-
mations to achieve linearity between field-based biomass and
nonlinear forest structural parameters [7], [11], [15]. We then
applied the variance inflation factor (VIF) to select noncollinear
PVs to overcome issues of over fitting in the model [21]. To
assess PV robustness, we used the “regsubsets” function from
the LEAPS package in R [18]. This function develops a list
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Fig. 2. An example of LiDAR data reduction using percentage algorithm and the distribution of points in each return across reduced point densities.
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Fig. 3. Distribution of average height variance (Hy,r) derived from LiDAR point density reductions using: (1) all returns, (2) first returns, and (3) first-in-pulse
returns. Greater height variance indicates data points that are more widely spread out around the mean and from each other.

TABLE I1
PVs DERIVED FROM ALL LIDAR RETURN TYPES AND POINT-DENSITY
REDUCTIONS COMBINATIONS AND USED TO DEVELOP REGRESSION
MODELS FOR ESTIMATING PLOT-LEVEL BIOMASS

Variable Description

TRC Total return count

H.in Height minimum

B Height maximum

5 o Height mean

Hinode Height mode

Hgp Height standard deviation

Hy. Height variance

H.. Height coefficient of variation

Hge Height skewness

Hywr Height kurtosis

Haap Height average absolute deviation

Hyap Height median absolute deviation

HMADme Median of the absolute deviations from the overall median

HMADmo Median of the absolute deviations from the overall mode

Higr Height interquartile range

HP(_99 Height percentile: 1st, 5th, 10th, 20th, 25th, 30th, 40th, 50th (median),
60th, 70th, 75th, 80th, 90th, 95th, and 99th

CRR Canopy relief ratio

PFRame Percentage first returns above mean

PFRamo Percentage first returns above mode

FRaMe First returns above mean

FRaMo First returns above mode

ARaMe All returns above mean

ARaMo All returns above mode

of models based on multiple scoring criteria [R?, adjusted R?,
Mallows’ Cp, and Bayesian information criterion (BIC)] and
helps select the best regression model [30]. We also applied
Bootstrap measures of relative importance for each predictor in
the selected model to determine the relative contribution of PVs
in the model. We selected the best subsets of PVs within each
model using the lowest Akaike information criterion (AIC)
value. Finally, we compared the performance of models across
reduced point densities within each LiDAR return category,
and between LiDAR return categories using an adjusted R?,
and root-mean-squared-error (RMSE) based on a 10-fold cross
validation (10-fold CV) analysis. We applied the F-test to deter-
mine if the variance of observed biomass was significantly
different from the predicted biomass.

III. RESULTS
A. All Returns Biomass Estimates

While data reduction revealed a significant variation in aver-
age height variance (Hy,;) across the three LiDAR return cate-
gories and with decreasing point densities, we found biomass
models showed similar predictive power (Figs. 3 and 4, and
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Fig. 4. Predicted versus observed aboveground biomass for each combination of LiDAR return type-and point density reduction (LP — LiDAR point density (%),

ARs — all returns, FRs — first returns, and FinP — first-in-pulse returns).

Table III). Hy,, in the all returns models was, on average, 103.6
and 30.0 m? higher compared to the models based on first
returns and first-in-pulse categories, respectively. A high Hy,
value in the all returns category indicated the presence of mid-
dle return points and their wide distribution around the mean
and from each other as compared to the first return and first-in-
pulse categories (Fig. 3). Biomass models below the 20% point
density produced slightly lower adjusted R? in each LiDAR
return category with slightly higher variation in the median
biomass (168.0 t/ha at 10%, 150.9 t/ha at 5%, and 168.2 t/ha
at 1% point densities) compared to the field-measured biomass

(157.9 t/ha) (Fig. 5). Similarly, the RMSE values were approx-
imately 41 t/ha at 1% point density in each LiDAR return
category (Table IV).

B. First Return Biomass Estimates

Biomass models based on first return data produced sim-
ilar estimates across all the reduced LiDAR point densities
with the greatest difference in variance being 13.3% when
comparing the 100% and 1% density models. We observed a
moderate change in predictive power between the 10% and 1%
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TABLE II1

MLR MODELS FOR PREDICTING ABOVEGROUND BIOMASS OF URBAN FORESTS

2
LiDAR (%)g;t:m Urban forest model with coefficients . djfs ] %2;5 )((t;t?ell;-
ARs*  y=44.39 + 0.31 .0 —3.72 umapmo + 3.461p0s 0.8203 0.8114 31.99 34.02

100  FRs  y=-10.49 + 0.27y4var —4.05umapmo + 2.1 1upos + 1.58prrame 0.8191 0.8070  32.11 3495
FinP  y=-6.34 + 0.32 gyar =5.39umapmo + 2.071pos + 1.73prrame 0.8195 0.8074 32.06 33.87

ARs"  y=49.26 + 0.3 1110 —3.65umanmo + 3.28kpos 0.8086 0.7992  33.02 35.34

80 FRs  y=-10.56 + 0.294y, —4.20umapmo + 2-108pos + 1.52prrame 0.8272  0.8157 31.38 34.17
FinP  y=63.90 + 0.32yy, =5.29 umapmo + 3-17upos 0.8038 0.7941 3343 3585

ARs"  y =540 + 028y —2.58 nvapmo™™ + 3.12pp0s + 0.62pmrame’ 0.8076  0.7948  33.10  36.93

60 FRs  y=-9.34 4 0.28yyar 4.4 1amapmo + 2.14upos + 1.56prRame™*  0.7970  0.7835  34.00 37.03
FinP  y=156.75 + 0.29,, —411.18y¢, + 0.84prrame * 0.7819 0.7712 3524 37.96

ARs*  y=11.13 + 0.28y: —3.36 imvapmo + 2-671pos + 0.75prramd 0.8210 0.8090 31.94 34.06

40 FRs  y=-14.56 + 0.27uvar—3.9%mapMmo + 2.021p0s + 1. 70pprame™*  0.8108  0.7982  32.83  35.19
FinP y= 6.03 + 0~29Hvar‘4~2 lamapmo + 2.1 Typos + 1v08PFRame** 0.8233 0.8115 31.72 33.89

ARs*  y=26.16 + 0.28110: —3.44 1mapmo + 2-70upos + 0.5 1prrame ™ 0.7872 0.7730  34.82 37.58

20 FRs  y=-16.39 + 0.2%4var—3.46 umapmo ™™ + 2.15gpos + 1.53pprame** 0.7708  0.7555  36.13  39.79
FinP  y=18.87 + 0.28var —3.7 lumapmo + 2-085p0s + 0.86prrame * 0.8019 0.7887  33.59 35.84

ARs* y=19.57 + 0.2 71y =3.64 mvapmo™ + 2.84mpos + 0.62prrame 0.7747 0.7597  35.82 38.87

10 FRs y =118.64 + 0.19%. + 1.83mvapmo™ —332.1 Ijey +1.281m0ae™* 0.7752  0.7602  35.78 41.49
FinP y =163.76 + 0.24y,,; —328.824cy + 0.601m0de* 0.7678  0.7564  36.37 39.26

ARs*  y=34.12 + 02812 —3.4Tumapmo™ + 2.30xp0s + 0.56prrame” 0.7624  0.7466  36.79 39.35

5 FRs  y=—4.40 4 0.21yyar+ 2.35up0s + 13.10uxur 0.7388 0.7260  38.57 40.59
FinP  y=-68.49 + 0.254v0r—1.77umapMo + 1.75mp0s + 219.76cge™  0.7642  0.7484  36.65 40.01

ARs*  y=-119.15 + 1.27mc* + 2.56umin+ 0.17pvar + 259.90crr 0.7164 0.6975 40.19 43.63

1 FRs  y=23.45+2.7lymin+ 0.17xyyr — 102.48 cgrr + 30.68 ks 0.6941 0.6737 41.75 45.86
FinP  y=—10.83 + 2.55umin+ 0.165yar + 26.5 7wy 0.7093  0.6950 40.51 43.52

ARs, all returns; FRs, first returns; and FinP, first-in-pulse returns.
% Percentage of original LiDAR data.

#Biomass model [26].

10-fold cross validation.
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Fig. 5. Predicted biomass (tons/ha) categorized by each combination of LiDAR return type and point-density reduction. Red horizontal line indicates the median
of observed biomass (Obs, field-measured biomass; a, all returns, b, first returns, and c, first-in-pulse returns). The bottom and top of box in each biomass model
are the first and third quartiles. The division inside each box represents the median. The ends of the whiskers represent the minimum and maximum of all of the

data with the suspected outliers in each biomass model.

reduced point-density models (Fig. 4 and Table III). RMSE
values of the biomass models exhibited a similar trend with
a maximum difference of 3.7 t/ha between 100% and 10%,
and 5.9 t/ha between 10% and 1% point densities (Table IV).
The largest difference in the 10-fold CV was 10.9% when

comparing models based on 100% and 1% point densities.
While we observed the presence of similar PVs in models
(except at 10%, 5%, and 1% point densities), H,,, was com-
mon to all models (Table III) and contributed up to 65% in
total biomass variance (adjusted R?). The F-test showed that
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TABLE IV
CHANGE IN ADJUSTED R2? AND RMSE FOR EACH COMBINATION
OF LIDAR RETURN TYPE AND POINT-DENSITY REDUCTION

LiDAR Adjusted R RMSE (t/ha)

reductions ARs FRs FinP ARs FRs FinP
100 0.81 0.81 0.81 31.99 32.11 32.06
80 0.80 0.82 0.80 33.02 31.38 3343

60 0.79 0.78 0.77 33.10 34.00 35.24

40 0.81 0.80 0.81 31.94 32.83 31.72

20 0.77 0.76 0.79 34.82 36.13 33.59

10 0.76 0.76 0.76 35.82 35.78 36.37

5 0.75 0.73 0.75 36.79 38.57 36.65

1 0.70 0.67 0.70 40.19 41.75 40.51

ARs, all returns; FRs, first returns; FinP, first-in-pulse returns.

predicted biomass estimates were similar to field measure-
ments, including at 10%, 5%, and 1% point densities.

C. First-in-Pulse Biomass Estimates

We found biomass estimates and general performance of
first-in-pulse models to be consistently similar to the results
based on first returns models across all reduced point densities.
Overall, biomass estimates (adjusted R?) and RMSE differ-
ences between models based on first returns and first-in-pulse
categories varied by 2% and 1 t/ha, respectively. We observed
trivial differences in biomass variance among the three LiDAR
returns categories and across all reduced LiDAR point den-
sities with one exception. At 1% LiDAR point density, we
found a 3% difference in adjusted R? between the first returns
and other two LiDAR return categories (Fig. 4; Table IV). We
observed the presence of similar PVs and their relative contribu-
tions to biomass estimates across all the reduced point densities,
including the presence of the H,,, variable.

IV. DIScusSION

LiDAR data have proven valuable in the assessment of
biomass and other forest biophysical parameters. Typically,
LiDAR data with higher point densities (both horizontally and
vertically) help produce a higher quality 3-D representation of
the earth’s surface and may prove useful for multiple purposes,
including subcanopy forest studies, e.g., detection and map-
ping evergreen understory invasive Chinese privet (Ligustrum
sinense) [27]. However, given that the higher data procure-
ment costs and data volume pose major challenges to large-area
assessments, this study provides a framework for using reduced
volume of data for estimating aboveground biomass of highly
fragmented and spatially heterogeneous urban forests. Our
urban environment study suggests that using first returns or
first-in-pulse of LiDAR data, normalized by topography, pro-
duces biomass estimates similar to estimates derived using all
returns of LiDAR data. These findings validate our assumption
that LiDAR first return data are sufficient for biomass assess-
ment. Since our study is conducted in temperate forests and
uses leaf-off season LiDAR data, we note the effects of return
number could be different for forests with thick evergreen
understory vegetation or where LiDAR data are acquired dur-
ing the leaf-on season. For example, [26] suggested considering
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forest types model to address greater diversity of forest types for
reasonable biomass estimates at regional scales. Across all data
reductions from 100% to 1%, we observed biomass estimates
from both the first returns and first-in-pulse that are similar
to estimates based on all returns LiDAR data. This also sug-
gests that direct use of first returns or first-in-pulse data may
be a more efficient and effective alternative to point-density
reduction approach in estimating biomass.

Estimates derived from first return and first-in-pulse mod-
els were similar to findings of [5]. Dalponte et al. observed a
slight increase of 2% (adjusted R? of all return model—0.77
and first return model—0.75) in the overall model accuracy
for estimating individual stem volume using variables from
all returns over first returns model. Similarly, [4], [10], and
[14] observed that the metrics derived from first returns were
not significantly different than using all returns in predicting
biomass. The comparable performance is perhaps due to the
leaf-off season LiDAR data as open canopy forest allows good
infiltration of first returns to the forest floor and permits suffi-
cient representation of forest vertical structure [28]. However,
the increasingly similar performance of first return and first-in-
pulse models to all return models across the range of reduced
point densities invalidates the seasonal factor. Moreover, we
observed the presence of the same PVs in biomass models of all
three return categories. Therefore, it may be possible to use first
returns instead of all returns for estimating biomass for large
areas without a significant decrease in overall accuracy. The
first-in-pulse may offer similar prospects where LiDAR data are
available in tile format covering large areas of interest. In addi-
tion, these approaches could be particularly useful in analyzing
LiDAR data collected for hydrological studies and containing
only the first and last returns.

We found virtually identical predictive power for the first
return models across the reduced point densities. This find-
ing validates our hypothesis that given a minimal number of
LiDAR points suitable for extracting structural metrics, there is
no significant compromise in overall model performance. For
example, we found overall accuracies, on average, only 1.5%
lower for the first return models below 80% point densities
compared to using all returns (Table IV). As suggested by [9]
and [16], a higher point density does not necessarily produce
data or outputs with greater information content. We observed
that models developed using the first return and first-in-pulse
accompanied by data reduction maintained overall model per-
formance as compared to all return models. This suggests that
first return data combined with point-density reduction is suf-
ficient for large-area biomass assessments while maintaining
the predictive power in regression models. However, point-
density reduction approaches generally require time-intensive
data analysis to identify an ideal cutoff point for data resam-
pling. We observed missing values in many metrics derived
at 5% and 1% reductions in both the first returns and first-in-
pulse categories. This suggests that variations in point density
within plots compared to the overall study area limit the util-
ity of point-density reduction algorithms. This warrants further
research to determine the requisite minimum number of LiDAR
points for an individual tree or plot that maintains the structural
integrity of the metrics suitable for accurate biomass estimation.
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Evaluation of the MLR equations revealed that the Hy,, vari-
able contributed substantially to overall performance of the first
returns and first-in-pulse models. This corroborates the find-
ings of [26] and [32] suggesting that Hy,, is an effective metric
for classifying vertical forest structural configurations. In addi-
tion, we observed the median of the absolute deviations from
the overall mode (HMADmo), height 5th percentile (HP5),
and the percentage of first returns above mean (PFRame) in
all models except those developed from point densities below
20%. Among these, HMADmo is a robust measure of height
variability, HP(5 represents the lowermost height in the plot
for each return category, and PFRame is the percentage of first
returns above the mean height within the data sample. However,
it is worth noting that the consideration of all LiDAR-derived
PVs for model development is useful as some PVs might reflect
finer scale forest structures and contribute to improved biomass
estimation, such as height minimum and lower percentiles. The
recurrence of these four PVs suggests that: 1) field-measured
biomass is primarily related to LiIDAR points representing tree
height and top-of-canopy configuration, and 2) first returns
provide the greatest contribution to aboveground biomass
estimation regardless of the presence of multiple returns in
LiDAR data. Overall, our study demonstrates that, LIDAR first
return data generate aboveground biomass estimates that are
comparable to estimates obtained using first-in-pulse and all
returns.

V. CONCLUSION

Repeated large-area assessments of forest biomass using
LiDAR data are required to understand the dynamic relation-
ships between changing climate, carbon stocks, and land-use
change in urbanizing areas. Across the spectrum of models
developed in this research, we observed variance in predicted
biomass estimates similar to field-measured biomass. Our find-
ings suggest that first return or first-in-pulse LiDAR data alone,
compared to all returns, are sufficient for estimating biomass.
The H,,, distribution shows that the use of first returns LiDAR
data normalized by elevation is an effective alternative to
any other LiDAR returns combination, including point-density
reduction, for estimating urban forest biomass without com-
promising biomass estimates accuracy. This also applies to the
utilization of existing LiDAR data (first and last returns) origi-
nally acquired for hydrological studies. Additionally, using first
return data combined with reduced point density can minimize
data procurement costs and overcome computational overhead
without compromising biomass estimation accuracy. Higher
adjusted R? and lower RMSE values of biomass models above
20% point density suggest that the first returns of LiDAR data
with an average point spacing of 0.70—1.5 m (approximately
1.35 points/m?) may offer cost-effective data procurement and
processing for urban forest landscape management. We found
Hy,: to be the most robust plot-level structural LiDAR met-
ric for predicting biomass, corroborating findings in [26], [27],
and [32]. Overall, this study suggests that multiple return, high
point-density LiDAR data may not significantly improve urban
forest biomass estimations over large areas despite the greater
procurement costs and computational overhead. We conclude

3217

that using: 1) first returns LiDAR data for biomass estima-
tion is an effective and accurate alternative to using first-in-
pulse data, multiple return data, and/or applying data reduc-
tions, and 2) first return data combined with reduced point
density can overcome computational challenges in large-area
applications.
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