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a b s t r a c t

Spatially explicit urban forest carbon estimation provides a baseline map for understanding the variation
in forest vertical structure, informing sustainable forest management and urban planning. While high-
resolution remote sensing has proven promising for carbon mapping in highly fragmented urban
landscapes, data cost and availability are the major obstacle prohibiting accurate, consistent, and
repeated measurement of forest carbon pools in cities. This study aims to evaluate the uncertainties of
forest carbon estimation in response to the combined impacts of remote sensing data resolution and
neighborhood spatial patterns in Charlotte, North Carolina. The remote sensing data for carbon mapping
were resampled to a range of resolutions, i.e., LiDAR point cloud density e 5.8, 4.6, 2.3, and 1.2 pt s/m2,
aerial optical NAIP (National Agricultural Imagery Program) imagery e 1, 5, 10, and 20 m. Urban spatial
patterns were extracted to represent area, shape complexity, dispersion/interspersion, diversity, and
connectivity of landscape patches across the residential neighborhoods with built-up densities from low,
medium-low, medium-high, to high. Through statistical analyses, we found that changing remote
sensing data resolution introduced noticeable uncertainties (variation) in forest carbon estimation at the
neighborhood level. Higher uncertainties were caused by the change of LiDAR point density (causing 8.7
e11.0% of variation) than changing NAIP image resolution (causing 6.2e8.6% of variation). For both LiDAR
and NAIP, urban neighborhoods with a higher degree of anthropogenic disturbance unveiled a higher
level of uncertainty in carbon mapping. However, LiDAR-based results were more likely to be affected by
landscape patch connectivity, and the NAIP-based estimation was found to be significantly influenced by
the complexity of patch shape.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Urban forests can provide a myriad of ecosystem services, such
as air pollution reduction, biodiversity preservation, climate
amelioration, water quality improvement, and leisure enhance-
ment to improve public health and human development (Dwyer
et al., 1992; Wear et al., 1998; Tyrv€ainen and Miettinen, 2000;
Alvey, 2006; Nowak et al., 2013). In North America, municipal
governments play a vital role in protecting, planting, and main-
taining trees that grow on public lands (e.g., street and park trees).
A number of cities have developed urban forest management plans
(e.g., Charlotte, Seattle, Baltimore, and NYC) to address the growing
challenge of declining forest health and extent due to rapid urban
development (City of Baltimore 2007; City of Seattle, 2013; City of
New York 2014). However, themajority of urban trees actually grow
on private lands with limited site accessibility. City managers are
facing a common challenge that a municipal-scale forest conser-
vation plan needs to be developed using forest inventories that are
biased to street and park trees (Clark et al., 1997).

Remote sensing offers an ideal tool to provide spatially explicit
characterization of urban forest with minimum field efforts to
address this challenge. Recently, the advances in sensor technology
allow the practitioners to retrieve both the forest horizontal
structures (e.g., canopy cover e the horizontal extent of canopies
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per unit land area) and vertical structures (e.g., tree height and
carbon storage). Although canopy cover has been a popular
parameter to imply the effectiveness of forest management, carbon
storage is drawing increasing attention, because it can describe tree
growth (e.g., old versus young, healthy versus damaged) in a more
accurate way (Singh et al., 2015a,b). Knowing how much carbon is
stored by urban forest can further assists in developing effective
climate change mitigation efforts, such as supplying marketable
carbon emission offsets in a carbon trading program (Poudyal et al.,
2010).

The nature of fragmented development in an urban setting often
leads to small, isolated tree patches surrounded by abiotic com-
ponents. Therefore, high-spatial resolution (hereafter h-res) remote
sensing data is particularly beneficial for urban forest management.
Forest carbon estimation requires accurate answers to two ques-
tions: where are the trees? And how much carbon is stored in the
spotted trees? The first question can be well addressed by h-res
optical sensors, because they have the capacity to differentiate
complex land cover types (e.g., forest versus building) based on the
distinct spectral, spatial, and/or temporal characteristics of fine-
scale ground objects (Blaschke et al., 2014). Once trees are
located, structural data such as small footprint LiDAR point clouds
are ideal to extract plant vertical structure, including understory
vegetation (Shrestha and Wynne, 2012; Singh et al., 2015b).

While theoretically promising, applying h-res remote sensing to
map forest carbon storage at the municipal scale is often restrained
by limited budget, as the costs associated with h-res data acquisi-
tion and processing remain high. A potential solution is to use
coarser-resolution data. But, can such data still generate satisfac-
tory results meeting the needs of urban forest management? Pre-
vious efforts exploring the resolution-accuracy relationship mainly
focused on natural forests (e.g., Treitz et al., 2012; Jakubowski et al.,
2013). However, studying the similar topic in an urban setting has
received less attention (Singh et al., 2015a). This is because urban
environments are highly fragmented where neighborhoods vary by
levels of forest fragmentation. It is likely that the neighborhood
development patterns (e.g., low versus high built-up density)
further complicate the resolution-accuracy relationship in an urban
setting.

To inform effective urban forest management while reducing
costs, this study aims to improve our understanding of the un-
certainties in urban forest carbon mapping through assessing the
joint impacts of remote sensing data resolution and neighborhood
patterns. We integrated h-res remote sensing data from aerial
photography and airborne LiDAR to estimate spatially explicit forest
carbon distributions across the Charlotte metropolitan area of
North Carolina, United States. The variation in carbon estimation
was generated using multiple resolutions of data from aerial im-
agery and LiDAR point clouds, respectively. We further applied
statistical modeling to quantify how such data resolution-induced
variation was affected by urban spatial patterns at the neighbor-
hood level.

2. Study area

Our study area covered the entire CharlotteeMecklenburg
County (CMC) of North Carolina, United States, with a size of
1415 km2 centered at 35�150N, 80�500W (Fig. 1). Charlotte, the
largest city in North Carolina, has earned the title of “The City of
Trees”, and is recognized as one of the “10 best cities for urban
forests” by American Forests, the oldest national non-profit citizen
conservation organization (American Forests, 2014). Forested
landscapes of Charlotte are primarily comprised of secondary
growth oak-hickory-pine trees (BenDor et al., 2014). According to
the most recent city-maintained forest inventory, approximately
86% of all street trees (~180,000) in Charlotte are deciduous trees
with 39% being large maturing species (trees that will grow >40')
(City of Charlotte (2013)). Five dominant species, including crape
myrtle (Lagerstroemia spp.), willow oak (Quercus phellos), redmaple
(Acer rubrum), callery pear (Pyrus calleryana), and dogwood (Cornus
florida), represent 50% of the total street tree population, while the
remainder is comprised of sugar maple (Acer saccharum Marsh.),
sweetgum (Liquidambar), eastern redcedar (Juniperus virginiana),
and pear (Pyrus spp.) (City of Charlotte (2013)). The trees on private
lands, however, still lack detailed inventories compared to the
street trees.

Since the mid-1980s, the Charlotte metropolitan area has
become one of the fastest developing regions of the southeastern
United States. According to U.S. Census Bureau (2015), CMC has
grown in population from 0.4 million in 1980 to over 1 million
people in 2014, a trend that is expected to continue. The rapid
population growth, manifested by an urban geography of low,
medium to high housing density, has replaced landscapes domi-
nated by native forest and farmland with an array of developed
land use types including managed treescapes and highly frag-
mented urban forests (BenDor et al., 2014).

3. Data

3.1. Field data

Field mensuration was conducted during 2010e2012 as part of
the Charlotte ULTRA-Ex (Urban Long-Term Research Areas Explor-
atory) study designed to analyze socio-ecological interactions
driving the persistence of private forest (Singh et al., 2015b). This
research selected a total of 56 circular plots (0.04 ha each) across
deciduous (25 plots) and coniferous (21 plots) forests. Those field
plots were designed to cover a variety of major species types in the
study area, such as Shagbark Hickory (Carya ovata), Sweet Gum
(Liquidambar styraciflua), White Oak (Quercus alba), Tulip Poplar
(Liriodendron tulipifera), Winged Elm (Ulmus alata), Willow Oak
(Quercus phellos), Loblolly Pine (Pinus taeda), Mockernut Hickory
(Carya tomentosa), Pignut Hickory (Carya glabra), Tulip Poplar
(Liriodendron tulipifera), Red Maple (Acer rubrum), Short Leaf Pine
(Pinus echinata), and Eastern Red Cedar (Juniperus virginiana).
Within each plot, we measured geographic coordinate, tree diam-
eter at the breast height (DBH), species composition, and
merchantable tree height. If a plot consisted of over 75% deciduous
or coniferous trees, we labeled the plot as deciduous or coniferous,
respectively otherwise we labeled plots as mixed plots. We applied
the classic Jenkins allometric equations (Jenkins et al., 2003) to
calculate forest aboveground biomass (AGB) for all the field plots by
following Godwin et al. (2015). Although we recognized that Jen-
kins equations were developed and complied for a larger areal
extent of contiguous United States, the results were considered
‘ground truth’ due to the lack of local equations. McPherson et al.
(2013) also argued that such errors are smaller than the high
variation in tree growth in urban environments.

3.2. Remote sensing data

Two types of remote sensing data were utilized in this project,
including LiDAR point clouds, and NAIP (National Agriculture Im-
agery Program)multispectral imagery. LiDAR datawere acquired by
the Storm Water Services Division of Charlotte-Mecklenburg
County government office in April 2012, as part a long-term
flooding monitoring project. Original data acquisition was carried
out using Optech's ALTM Gemini 3100 LiDAR system (Optech
Incorporated, Vaughan, Canada), at point densities of 1.0 pts/m2 for
the entire region and 5.8 pts/m2 for forest-covered areas.We used a



Fig. 1. Study area of the Charlotte-Mecklenburg Country of North Carolina, USA.
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total of 1896 tiles (914.4 � 914.4 m each) of LiDAR point clouds. A
NAIP image mosaic covering the study area was downloaded from
the U.S. Department of Agriculture Geospatial Data Gateway
(http://datagateway.nrcs.usda.gov/). The raw images were taken
during the leaf-on season in 2012 at 1.0 m spatial resolution with
four spectral bands (blue, range of wavelength: 400e580 nm;
green, range of wavelength: 500e650 nm; red, range of wave-
length: 590e675 nm; and near infrared, range of wavelength:
675e850 nm). The images were geometrically and radiometrically
corrected, orthorectified, and mosaicked before being made avail-
able online (U.S. Department of Agriculture, 2015).

3.3. Residential neighborhoods

The Charlotte-Mecklenburg Quality of Life Project defined a total
of 464 Neighborhood Profile Areas (NPA) in the region (City of
Charlotte and Mecklenburg County, 2012). Each NPA represents
one or more homogenous census block groups with similar
development patterns. We randomly selected 50 NPAs for the
succeeding analyses, with a purpose to mitigate the negative
impact of spatial autocorrelation among NPAs. Since urban resi-
dential neighborhoods vary in development, we adjusted the
random selection criterion to include comparative numbers of
neighborhoods with built-up densities (i.e., percent built-up: PBU)
from low (PBU � 15%), medium-low (15% < PBU � 25%), medium-
high (25% < PBU � 40%) to high (PBU > 40%). This approach of
neighborhood categorization has proven effective to analyze
Charlotte's forest-neighborhood relationship in a previous study by
Godwin et al. (2015).

4. Methods

4.1. Urban land-cover mapping

The four-band NAIP image mosaic was employed to extract the
wall-to-wall forest canopy cover in the study area. Here, we
resampled the image from 1 m to three coarser spatial resolutions
5, 10 and 20 m, with the main purpose to examine the impact of
image resolution on canopy cover and carbon storage estimation.
The coarsest resolutionwas chosen to be consistent with the size of
field plots. The main purpose of choosing those resolutions was
based on our consideration that high-resolution remote sensing
should provide equivalent or higher-resolutionmeasurements than
those collected from the field. There are normally two typical land-
cover image classification schemes: pixel-based versus object-
based. For the images with resolutions of 1 and 5 m, we selected
the object-based scheme, while the pixel-based scheme was uti-
lized to classify the images with coarser resolutions of 10 and 20 m.
This was based on two considerations. First, at the high resolutions
of 1 and 5 m, individual pixels often represented part of a tree. The
variation in leaf reflection angle caused by various species types
and the coexistence of sunlit and shaded canopies caused high
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spectral ‘noises’ in classification. The object-based approach
grouped neighboring pixels together to create image-objects as the
basic study units, which indicated proven success to reduce such
noises in forests (Chen et al., 2012). However, at the resolutions 10
and 20 m, the sizes of pixels were often equivalent or larger than
the sizes of individual trees in our study area, making it more
reasonable to take the classic pixel-based approach. Second, we
have compared the performance of both classification schemes at
all chosen resolutions with results confirming our assumptions
made in the first consideration.

We performed classification in the eCognition Developer 8
environment (Trimble Navigation, California, USA) using four steps:
(i) image-objects, representing small tree clusters or individual tree
crowns, were generated by the multiresolution segmentation al-
gorithm. The scale parameter of 30 was found to work well for both
resolutions of 1 and 5 m. No objects needed to be generated for the
pixel-based classification, with the chessboard algorithm used to
retain pixels. (ii) The input variables/features for classification
included the four NAIP multispectral bands and the corresponding
four spectral variation (i.e., standard deviation) bands. (iii) The
classic nearest neighborhood classification algorithm was applied
to classify all the pixels into six land-cover classes, including de-
ciduous forest (C1), coniferous forest (C2), built-up (C3), open space
(C4), water (C5), and bare soil (C6). Here, we categorized forests
into two classes, because deciduous and coniferous trees have
different forms and their carbon storage is often modeled sepa-
rately. For each resolution of image, a total of 300 training samples
were randomly selected across all image-objects or pixels. Identi-
fication of land-cover classes was made through manual photo
interpretation and field visits. (iv) The accuracies of results were
reported using confusion matrices and kappa statistic. Similar to
the extraction of training samples, 300 validation samples were
selected following a random selection manner.
4.2. Spatially explicit forest carbon estimation

Estimating forest carbon storage was conducted in two main
steps: (i) plot-level carbon modeling with LiDAR and field data;
and (ii) application of the plot-level models to estimate spatially
explicit carbon storage with LiDAR and NAIP classification maps
(Section 4.1). Specifically, (i) LiDAR point clouds were resampled to
100% (no resampling, 5.8 pts/m2), 80% (4.6 pts/m2), 40% (2.3 pts/
m2), and 20% (1.2 pts/m2) for the purpose of analyzing the impact
of LiDAR point density on forest carbon estimation, using the
‘percentage of the total points’ reduction algorithm developed at
Boise Center Aerospace Laboratory (BCAL LiDAR Tools, Idaho, USA).
A total of eight models were developed to link field-measured AGB
with LiDAR-derived variables at the four densities for deciduous
and coniferous trees, respectively. Because those models were
available from one of our previous research (see details in Singh
et al., 2015a), they were directly used in the current study. (ii)
LiDAR models developed at each point density were combined
with the four NAIP classification maps to generate wall-to-wall
deciduous/coniferous AGB estimates for the entire study area.
This was followed by AGB conversion to aboveground carbon by
multiplying a constant 0.5, a standard conversion factor used in
many natural and urban forest studies (Hudak et al., 2012;
McPherson et al., 2013; Myneni et al., 2001). Because all the
LiDAR models were developed at the scale of 0.04 ha (400 m2), the
NAIP classification maps were resampled to the same scale
(20 � 20 m grids) using the simple majority rule to define the final
land-cover class for each grid. In total, we generated 16 carbon
maps (four point densities of LiDAR point clouds � four resolu-
tions of NAIP images) for the study area.
4.3. Extraction of landscape patterns

The spatial structure and patterns of urban neighborhoods can
be quantified in a variety of ways. In this study, we followed the
widely used landscape metrics (McGarigal et al., 2002) to evaluate
five aspects of spatial patterns that may cause uncertainties in
forest carbon estimation. Specifically, we calculated percentage of
landscape area (PLAND), mean patch size (MPS), edge density (ED),
contagion index (CONTAG), Shannon's diversity index (SHDI), and
patch cohesion index (COHESION) to represent area (PLAND and
MPS), shape complexity (ED), dispersion/interspersion (CONTAG),
diversity (SHDI), and connectivity (COHESION) of landscape
patches for the used neighborhoods. Refer to McGarigal et al.
(2002) for detailed interpretations of each metric. In our study,
the area metrics (i.e., PLAND and MPS) were derived from indi-
vidual land-cover classes, while the other ones were extracted
considering all the classes together. As suggested by Godwin et al.
(2015), the majority of those five types of metrics demonstrated
different value ranges across the four categories of Charlotte's
residential neighborhoods with built-up densities from low,
medium-low, medium-high, to high. Here, we anticipated that such
cross-neighborhood variations in the metrics may cause un-
certainties in urban forest carbon estimation, which was jointly
affected by the choice of remote sensing resolution.

4.4. Analyses of uncertainties in forest carbon estimation

We evaluated two main factors causing uncertainties in forest
carbon estimation, including (i) the resolution of remote sensing
data (i.e., NAIP pixel size and LiDAR point density), and (ii) the
spatial patterns of urban residential neighborhoods. Specifically, (i)
we calculated neighborhood-level carbon variation (standard de-
viation) for two scenarios. First, we fixed the resolution of NAIP
image, and extracted carbon variation by comparing four carbon
maps that applied NAIP image of a chosen resolution and LiDAR
data of all the four point densities. We repeated the process for all
the four resolutions of NAIP images, respectively, and derived four
forest carbon variationmaps. All the variation values were averaged
at the neighborhood level. Second, the entire process was similar as
that in scenario one. Another four carbon variation maps were
generated. However, the roles of NAIP and LiDAR were switched.
Through scenario one, we intended to quantify the impact of
changing LiDAR point density on carbon estimation; while scenario
two emphasized on the analysis of changing NAIP image resolution.
Finally, we generated eight neighborhood-level carbon variation
maps. (ii) To further understand which aspects of urban spatial
patterns have significantly contributed to such variation in remote
sensing carbon estimation, we developed eight linear regression
models to link the extracted landscapemetrics (predictor variables;
Section 4.3) with each of the eight neighborhood-level carbon
variation values (response variable). Variance inflation factor (VIF)
was calculated to avoid multicollinearity among the predictor
variables. By following a common rule of thumb, the predictor
variables were selected where VIFs were smaller than five in the
final models. All the models were developed at a 0.05 significance
level using Akaike's information criterion (AIC) for determining the
best ones, with adjusted R2 and RMSEs (root-mean-square errors)
reported.

5. Results and discussion

5.1. Uncertainties in land-cover mapping

The overall accuracies for the study area's land cover mapping
were 88.67%, 82.00%, 81.67%, and 83.67%, using NAIP at 1, 5, 10 and
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20 m resolutions, respectively (Fig. 2; Tables 1e4). Obviously, the
highest resolution of 1 m offered the most detailed information of
the complex urban landscape, facilitating an accurate extraction of
land cover. The other three resolutions of data had comparative
Fig. 2. Land-cover classification maps derived from four NAIP ima
performance, which was 5e7% inferior than that using the 1 m
image. In all cases, both the user's and producer's accuracies for
mapping forests (i.e., deciduous and coniferous trees) were
consistently higher than 80%. Because of the distinct spectral
ges with spatial resolutions of 1, 5, 10 and 20 m, respectively.



Table 1
Confusion matrix of the object-based image classification with 1 m NAIP image.

User class Reference class

Bare soil Built-up Coniferous Deciduous Open space Water Total User's accuracy (%)

Bare soil 14 2 0 0 1 0 17 82.35
Built-up 1 89 2 0 1 0 93 95.70
Coniferous 0 0 46 5 0 0 51 90.20
Deciduous 0 0 3 40 0 0 43 93.02
Open space 1 2 0 2 55 0 60 91.67
Water 0 10 4 0 0 22 36 61.11
Total 16 103 55 47 57 22 300
Producer's accuracy (%) 87.50 86.41 83.64 85.11 96.49 100.00

Overall accuracy ¼ 88.67%; Kappa statistic ¼ 0.86.

Table 2
Confusion matrix of the object-based image classification with 5 m NAIP image.

User class Reference class

Bare soil Built-up Coniferous Deciduous Open space Water Total User's accuracy (%)

Bare soil 14 1 0 0 2 0 17 82.35
Built-up 5 80 5 0 3 0 93 86.02
Coniferous 0 4 43 4 0 0 51 84.31
Deciduous 0 2 4 35 2 0 43 81.40
Open space 0 4 0 3 52 1 60 86.67
Water 0 13 1 0 0 22 36 61.11
Total 19 104 53 42 59 23 300
Producer's accuracy (%) 73.68 76.92 81.13 83.33 88.14 95.65

Overall accuracy ¼ 82.00%; Kappa statistic ¼ 0.77.

Table 3
Confusion matrix of the pixel-based image classification using 10 m NAIP image.

User class Reference class

Bare soil Built-up Coniferous Deciduous Open space Water Total User's accuracy (%)

Bare soil 10 7 0 0 0 0 17 58.82
Built-up 0 86 0 0 7 0 93 92.47
Coniferous 0 0 50 0 1 0 51 98.04
Deciduous 0 0 1 40 2 0 43 93.02
Open space 5 11 0 0 43 1 60 71.67
Water 0 20 0 0 0 16 36 44.44
Total 15 124 51 40 53 17 300
Producer's accuracy (%) 66.67 69.35 98.04 100.00 81.13 94.12

Overall accuracy ¼ 81.67%; Kappa statistic ¼ 0.76.
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characteristics from vegetation as compared to other land-cover
types, urban forests as a whole actually achieved an even higher
accuracy. The major challenge was to accurately differentiating the
deciduous from the coniferous trees. Coniferous trees typically look
brighter in the near-infrared, red and green band combination due
to the higher spectral reflectance in the near-infrared spectral
range, which was captured by NAIP. However, the difference in
Table 4
Confusion matrix of the pixel-based image classification using 20 m NAIP image.

User class Reference class

Bare soil Built-up Coniferous De

Bare soil 14 2 0 0
Built-up 9 83 0 0
Coniferous 0 3 47 0
Deciduous 0 0 4 36
Open space 0 0 0 5
Water 0 19 0 0
Total 23 107 51 41
Producer's accuracy (%) 60.87 77.57 92.16 87.

Overall accuracy ¼ 83.67%; Kappa statistic ¼ 0.79.
spectral characteristics was difficult to be determined in some
geographic areas covered by forests of mixed species types. This
introduced uncertainties in the succeeding carbon estimation,
because remote sensing carbon models were often developed for
deciduous and coniferous tree, respectively, including the models
used in our study.

While accuracy is an important criterion for assessing the
ciduous Open space Water Total User's accuracy (%)

1 0 17 82.35
0 1 93 89.25
1 0 51 92.16
3 0 43 83.72
54 1 60 90.00
0 17 36 47.22
59 19 300

80 91.53 89.47



Fig. 3. Forest carbon maps derived from four resolutions (1, 5, 10 and 20 m) of NAIP images, four densities of LiDAR point clouds (100%, 80%, 40% and 20% of the original data).
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mapping performance, it should be noted that image classification
is typically calibrated and validated at specific scales using pixels or
image-objects. Unlike their natural counterparts, urban landscapes
are subject to a higher level of fragmentation. While a coarse res-
olution (e.g., 20 m) helped mitigate spectral noises caused by the
variation in leaf reflection angles and the coexistence of sunlit and



Fig. 4. Variation (standard deviation) of forest carbon density for using each of the four LiDAR point densities and each of the four NAIP image resolutions, respectively. The stock
charts illustrate maximum, minimum, and average values.
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shaded canopies, pixels tended to stride across landscape patches
of different classes. Image-objects from a fine-resolution image
(e.g., 5 m) were created with an intention to capture the actual
geographic objects reducing the chances of comprising more than
one type of land-cover patches in each object. Hence, the shapes of
the basic study units for classifying coarse- and fine-resolution
imagery were different (squared pixels versus image-objects of
varying shapes). Although overall classification accuracies of land
cover classifications were comparable, we observed inconsistencies
on the edges of many landscape patches among those classified
maps. The same reason may partially explain the variation in forest
carbon estimates that used those baseline land-cover maps for
determining forest spatial distribution.

5.2. Impacts of remote sensing resolution on forest carbon
estimation

We generated a total of 16 forest carbon maps (Fig. 3) combing
each of the four resolutions (1, 5, 10 and 20 m) of NAIP images, and
each of the four densities of LiDAR point clouds (100%, 80%, 40% and
20%). While the spatial distributions of carbon showed similar
patterns across the study area, the reduction of LiDAR point density
noticeably reduced carbon estimates in many areas. This was
especially true for small, isolated street trees, because low-density
point clouds could havemissed part of an individual tree (including
canopy tops) and sometimes the entire canopies. However, in the
relatively dense and large forest patches, the reduction of LiDAR
point density affected carbon estimates marginally. This is because
canopy structure of tree clusters was fairly captured by laser pulses
(Singh et al., 2015a). The reduction of NAIP image resolution,
however, affected carbon estimates in a different way. Such changes
Table 5
Linear regression models developed to link residential spatial patterns and forest carbon

Fixed data resolution Equation

LiDAR 20% Y ¼ �3.23* þ 0.08*** � PLAND_C3 � 0.50** � PLAND_C6 þ 3
LiDAR 40% Y ¼ 3.37** � 0.07*** � PLAND_C1 � 0.69*** � PLAND_C6 þ 5
LiDAR 60% Y ¼ �6.10** � 0.18** � PLAND_C2 � 0.08*** � PLAND_C3 � 0

� MPS_C2 þ 5.00*** � MPS_C6 þ 0.01*** � ED
LiDAR 100% Y ¼ �1.03 e 0.10*** � PLAND_C1 � 0.24** � PLAND_C2 � 0.5

� MPS_C2 þ 4.28** � MPS_C6 þ 0.01*** � ED
NAIP 1 m Y ¼ 444.03*** þ 0.41*** � PLAND_C2 þ 0.15*** � PLAND_C3 e

� CONTAG e 4.64*** � COHESION
NAIP 5 m Y ¼ �1.40* þ 0.41*** � PLAND_C2 þ 0.10*** � PLAND_C3
NAIP 10 m Y ¼ 308.69** þ 0.27*** � PLAND_C2 þ 0.10*** � PLAND_C3 e

NAIP 20 m Y ¼ 303.58*** þ 0.29*** � PLAND_C2 þ 0.12*** � PLAND_C3 e

Level of significance: *p < 0.05; **p < 0.01; ***p < 0.001.
Y: neighborhood level carbon variation; Ci: Land-cover class i (C1: deciduous forest, C2: co
percentage of landscape area for class i; MPS_Ci: mean patch size for class i; edge densi
mainly occurred in two types of areas: on the edges between tree
and non-tree patches, and within the mixed forest patches. As
discussed in the previous section, different classification schemes
(pixel-based versus object-based) were used to classify fine- and
coarse-resolution NAIP images, causing inconsistent shapes and
sizes of basic study units. On the edges of landscape patches, the
estimation of carbon storage was observed to reveal higher varia-
tion than the areas not sitting on the edge of two or more types of
land-cover patches.

We quantified carbon variation across the 50 tested neighbor-
hoods following the analyses proposed in Section 4.4. When we
fixed LiDAR point density and changed the resolution of NAIP im-
age, the average carbon variation varied from 2.7 to 4.0 ha/t, cor-
responding to 6.2e8.6% of the average carbon densities derived
from this study (Fig. 4). However, when we fixed NAIP resolution,
the change of LiDAR point clouds introduced a higher variation in
carbon estimation, from 3.8 to 5.3 t/ha, corresponding to 8.7e11.0%
of the average carbon densities (Fig. 4). The results indicated that
the change of remote sensing data resolution is likely to introduce
noticeable uncertainties in urban forest carbon mapping. The dif-
ference in the range of variation further suggested a higher sensi-
tivity of mapping accuracy to the choice of LiDAR point density than
the optical image resolution.

5.3. Joint impacts of residential patterns and remote sensing
resolution on forest carbon estimation

We developed eight linear regression models to explore the
relationship between residential spatial patterns and the variation
in remote sensing carbon estimates (see Section 5.2) at the neigh-
borhood level (Table 5). The first four models were derived by fixing
variation caused by the change of remote sensing data resolution.

Adjusted R2 RMSE(t/ha)

.48* � MPS_C6 þ 0.01*** � ED 0.44 1.32

.54** � MPS_C6 þ 0.01* � ED 0.41 1.49
.59*** � PLAND_C6 þ 2.41* � MPS_C1 þ 22.78** 0.50 0.98

3*** � PLAND_C6 þ 3.04* � MPS_C1 þ 29.47** 0.55 1.13

8.11*** � MPS_C3 þ 33.18*** � MPS_C4 þ 0.26** 0.78 1.33

0.76 1.34
0.01** � ED e 3.09** � COHESION 0.79 1.06
3.07*** � COHESION 0.80 1.12

niferous forest, C3: built-up, C4: open space, C5: water, and C6: bare soil); PLAND_Ci:
ty (ED); dispersion/interspersion (CONTAG); connectivity (COHESION).
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LiDAR point density, which allowed us to investigate the impact of
changing NAIP resolution on carbon estimation. The last four
models were developed to assess the impact of changing LiDAR
point density on carbonmapping. Results showed that the variation
caused by reducing LiDAR point density was better explained by
neighborhood patterns, i.e., higher R2 values, than that from
reducing NAIP resolution. This suggests a possibly stronger asso-
ciation between urban spatial patterns and the uncertainties using
LiDAR in carbon estimation.

The comparison of four models within each group revealed
relatively similar results. For example, the carbon variation by
changing NAIP resolution was mainly explained by the percentage
(PLAND_C6) and mean patch size (MPS_C6) of bare soil, and edge
density (ED), which demonstrated negative, positive, and positive
contributions, respectively (Table 5). High PLAND_C6 values often
occurred in new and/or poorly maintained neighborhoods with
relatively high densities of anthropogenic disturbances. Because
the built structures were often close to each other in those neigh-
borhoods, forest coverage was low, isolated, and clustered as green
belts or greenways. Changing NAIP resolution did not affect iden-
tifying trees at the edges. However, when MPS_C6 and ED values
were high, the corresponding neighborhoods were often subject to
a high level of vegetation disturbances and fragmentation. Complex
forest edges may also have introduced high uncertainties in remote
sensing carbon estimation. The carbon variation by changing LiDAR
point density wasmainly explained by the percentage of coniferous
forests (PLAND_C2), built-ups (PLAND_C3), and the connectivity of
land patches (COHESION), which demonstrated positive, positive,
and negative contributions, respectively (Table 5). The small per-
centage of coniferous trees in the region was found to be heavily
shaped by built objects, e.g., those planted in the yards as green
fence. They showed a similar impact as built-ups, where a denser
development pattern introduced a higher level of uncertainties in
LiDAR-based carbon estimation. The negative impact of COHEN-
SION indicated a strong impact of the subdivided nature of urban
landscapes on forest carbon estimation from multiple densities of
LiDAR data.

6. Conclusions

Spatially explicit measurement of forest vertical structure, e.g.,
carbon storage, in urban landscapes provides a crucial baselinemap
informing sustainable urban forest management. Our study inves-
tigated the impact of data resolution from aerial photography and
small footprint LiDAR on forest carbon estimation. This was fol-
lowed by quantifying how various types of neighborhood devel-
opment patterns affected the accuracy-resolution tradeoff in a fast-
growing, complex urban environment across the Charlotte-
Mecklenburg County of North Carolina. Results indicated that the
change of optical image resolution (from 1 to 20m) and LiDAR point
density (from 5.8 to 1.2 pt s/m2) introduced noticeable un-
certainties (variation) in forest carbon estimation at the neighbor-
hood level. In our assessment, such uncertainties were more
sensitive to changing LiDAR point density (causing 8.7e11.0% of
variation at the neighborhood level) than changing optical image
resolution (causing 6.2e8.6% of variation at the neighborhood
level). We also found significant impacts of neighborhood spatial
patterns on carbon variation by changing remote sensing data
resolution. For both data types, a high level of anthropogenic dis-
turbances (e.g., high percentage of built-up or high degree of tree
patch fragmentation) introduced high variation in forest carbon
estimation. While LiDAR-induced uncertainties were negatively
affected by landscape patch connectivity, NAIP-induced variation
was found to be positively correlated with the complexity of patch
shape. In this research, we divided forests into two broad types of
deciduous and coniferous trees. Although detailed species types
were not extracted owing to sensor limitations, the study is one of
the first evaluations quantifying uncertainties and their relation-
ships with remote sensing data resolution and complex urban
patterns. Although modeling fine-scale forest carbon storage could
introduce errors, this study assessed uncertainties mainly at the
neighborhood level. Because tree species types are generally not
bound to certain neighborhoods, we believe that the errors asso-
ciated with species did not have a major impact on our findings,
which can therefore inform effective urban forest management in
many other cities.
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