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8 Remote Sensing of 
Forest Damage by 
Diseases and Insects

Gang Chen and Ross K. Meentemeyer

8.1  INTRODUCTION

Forests are an integral part of natural ecosystems, providing numerous ecological, 
economic, social, and cultural services (Boyd et al. 2013; Chen et al. 2015a). For 
example, they store approximately 45% of terrestrial carbon (C) and remain as a 
large net C sink by capturing one-quarter of the anthropogenic carbon dioxide (CO2) 
each year (Bonan 2008; Pan et al. 2011). However, environmental change (e.g., severe 
drought) and global trade have increased forest vulnerability to a range of natural 
disturbances, including diseases and insects (Asner 2013; Boyd et al. 2013; Wang 
et al. 2008; Wingfield et al. 2015). Forest diseases are caused by pathogens that are 
infectious and transmissible, such as bacteria, fungi, viruses, and helminths. Insects 
attack different parts of the tree, with defoliators feeding on leaves or needles, and 
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146 Remote Sensing for Sustainability

bark/wood borers boring into the bark/wood. While some pathogen and insect spe-
cies are native to local ecosystems, many of the recent disturbances arise from the 
nonindigenous species that may pose more pernicious and unpredictable threats to 
forest health (Boyd et al. 2013). Over the past few decades, the frequency and inten-
sity of disease- and insect-caused forest disturbances have dramatically increased, 
leading to extensive tree mortality in key forest biomes worldwide. Examples include 
the sudden oak death epidemic in western United States, outbreaks of mountain 
pine beetle in Canada’s boreal forest, bronze bug damage in plantation forests in 
South Africa, and the spread of bark beetles in central Europe and Scandinavia 
(Fassnacht et al. 2014; Meentemeyer et al. 2015; Oumar and Mutanga 2014; Wulder 
et al. 2009). Figure 8.1 illustrates two typical symptoms of forest damage attributed 
to the outbreaks of mountain pine beetles and the infectious disease sudden oak 
death, respectively.

Sustainable forest management is essential to mitigating the destructive impacts 
of diseases or insects on forest ecosystems. This is especially true when major dis-
turbance events have the potential to reduce the dominant native species, causing a 
permanent change in forest structure. One prerequisite for effective management is to 
understand the spatial distribution and severity of forest damage. Consequently, miti-
gation efforts can be performed to limit the population and the spread of pathogens or 
insects on infected or susceptible host trees. Although conventional field mensuration 
remains the most accurate way to quantify stages of infestation, it becomes time-con-
suming and costly when pathogen or insect populations reach epidemic levels. Remote 
sensing provides a timely and accurate approach to scale up field measurements and 
characterize spatially explicit information about the Earth’s surface at landscape to 
regional scales. Recent developments in spaceborne and airborne sensors have further 

Mountain pine beetle 
Dendroctonus ponderosae 

Plant pathogen
P. ramorum

(b)(a)

FIGURE 8.1 Landscape-scale forest mortality caused by (a) mountain pine beetle and 
(b) sudden oak death. The infected trees show distinct symptoms of (a) red needles and (b) brown-
to-gray leaf lesions, respectively. (Courtesy of (a) Ministry of Forests, Lands and Natural Resource 
Operations, http://www2.gov.bc.ca/gov/content/governments/organizational -structure /ministries 
-organizations/ministries/forest-and-natural-resource-operations, and (b) California Oak 
Mortality Task Force.) 
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147Remote Sensing of Forest Damage by Diseases and Insects

advanced our ability to collect Earth observation data across multiple spatial, tempo-
ral, and spectral scales, making remote sensing feasible to monitor forest disturbances 
(e.g., variations in forest biophysical and biochemical parameters) in response to the 
disease and insect outbreaks of varying stages of invasion. Such rapid and accurate 
delineation of large-area forest damage allows decision makers to take prompt and 
informed actions, supporting the sustainable management of forests.

The main objective of this chapter is to provide a brief survey of remote sens-
ing assessment of forest damage by diseases and insects. Emphasis is directly laid 
on mapping forest disturbances with satellite and airborne Earth observation data. 
The following sections are organized to (i) summarize the recent trends of applying 
remote sensing to detect forest disease and insect outbreaks, (ii) investigate remote 
sensing characteristics and its qualifications for studying the topic, (iii) provide a 
brief review of remote sensing algorithms, and (iv) discuss several remaining chal-
lenges that face researchers and decision makers in sustainable forest management.

8.2  TRENDS OF REMOTELY DETECTING FOREST 
DISEASE AND INSECT OUTBREAKS

While the idea of applying remote sensing to detect disease- and insect-induced for-
est damage was considered as early as the 1970s and 1980s (e.g., Heller and Bega 
1973; Nelson 1983; Rock et al. 1986), only recently (since the late 1990s) did the 
topic receive considerable attention for managing emerging outbreak (Table 8.1). 
Two reasons possibly explain slow adoption. First, a growing number of studies 
showed that the frequency and intensity of forest disease and insect attacks signifi-
cantly increased over the past two decades as a result of climate change and glo-
balization (see a brief review by Boyd et al. [2013]). There was a growing need to 
understand the mechanisms (e.g., spatial patterns) of the landscape-scale disease and 
insect progression informing effective mitigation strategies. Second, the collected 
Earth observation data have increased immensely during the same time period. The 
large volumes of data sets with relatively cheap acquisition costs, for example, the 
opening of more than four decades of Landsat archive (Woodcock et al. 2008), made 
it easier to systematically analyze the impact of certain diseases or insects in specific 
areas of interest. Ironically, one of the recent challenges facing many researchers is 
how to better handle such big data.

Geographically, research hotspots were primarily located in North America (e.g., 
Canada and the United States) and Europe (e.g., Germany, Norway, Spain, Sweden, 
and the United Kingdom), with several other studies conducted in Australia, China, 
and South Africa. Please note that the case studies cited in Table 8.1 were collected 
by searching Elsevier’s ScienceDirect database with the following formula: remote 
sensing AND forest AND (disease OR insect). We also respectively substituted 
pathogen for disease, and pest for insect in the search. The results were further 
refined by removing the studies that did not contain a significant remote sensing 
component or did not target specific disease or insect types.

Compared to forest diseases, insects appeared to be more intensively studied 
using remote sensing (Table 8.1). This reflects the fact of high tree mortality induced 
by insects as well as their globally widespread occurrence. For example, among the 
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148 Remote Sensing for Sustainability

TABLE 8.1
Types of Diseases and Insects, and the Corresponding Regions, Countries, 
and Case Studies

Region Type of Disease or Insect Country Case Study

Europe Autumnal moth (Epirrita 
autumnata)

Sweden Babst et al. 2010

Bark beetle Ips grandicollis Germany Fassnacht et al. 2014

Bark beetle Ips typographus L. Germany Kautz 2014

Beech leaf-miner weevil 
(Rhynchaenus fagi)

Spain Rullán-Silva et al. 2015

Fungal spore Ganoderma sp. United 
Kingdom

Sadyś et al. 2014

Insect Physokermes inopinatus Sweden Olsson et al. 2012

Pine processionary moth 
(Thaumetopoea pityocampa)

Spain Sangüesa-Barreda et al. 2014

Pine sawfly (Neodiprion sertifer 
(Geoffrey))

Norway Solberg et al. 2006

North 
America

Black-headed budworm (Acleris 
gloverana (Walsingham))

Canada Luther et al. 1997

Blister rust fungus (Cronartium 
ribicola)

United States Hatala et al. 2010

Eastern hemlock looper 
(Lambdina fiscellaria)

Canada Fraser and Latifovic 2005

Eastern spruce budworm 
(Choristoneura fumiferana)

United States Wolter et al. 2009

Emerald ash borer (Agrilus 
planipennis Fairmaire)

United States Pontius et al. 2008

Gypsy moth (Lymantria dispar L.) United States de Beurs and Townsend 2008; 
Townsend et al. 2012; 
Thayn 2013

Hemlock woolly adelgid (Adelges 
tsugae Annand)

United States Siderhurst et al. 2010

Jack pine budworm 
(Choristoneura pinus pinus 
(Free.))

Canada, 
United States

Leckie et al. 2005; Radeloff et al. 
1999

Mountain pine beetle 
(Dendroctonus ponderosae 
Hopkins)

Canada, 
United States

Assal et al. 2014; Bright et al. 
2012; Cheng et al. 2010; Coops 
et al. 2009; Goodwin et al. 2008; 
Hatala et al. 2010; Meddens 
et al. 2011; Meigs et al. 2011, 
2015; Raffa et al. 2013; Skakun 
et al. 2002; Walter and Platt 
2013; Wulder et al. 2008, 2009

Spruce budworm (Choristoneura 
fumiferana)

Canada, 
United States

Wolter et al. 2008

(Continued)
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149Remote Sensing of Forest Damage by Diseases and Insects

United States’ 20 major diseases and insects that caused 6.4 million acres of 
tree mortality in 2011, 60% were insects; mountain pine beetle (Dendroctonus 
 ponderosae Hopkins) alone killed 3.8 million acres of trees (USDA Forest Service 
2012). Several other insects, such as bark beetle Ips grandicollis, gypsy moth 
(Lymantria dispar L.), and jack pine budworm (Choristoneura pinus pinus [Free.]), 
have also been well studied across forest biomes (Table 8.1). In contrast, remote 
detection of the disease impacts on forest ecosystems was less studied. One excep-
tion is sudden oak death caused by the invasive plant pathogen Phytophthora ramo-
rum (Rizzo et al. 2005), which received considerable attention as a result of rapid 
transmission and widespread mortality of oak and tanoak trees in coastal forests of 
California and Oregon (Table 8.1).

8.3  REMOTE SENSING CHARACTERISTICS AND QUALIFICATIONS

The premise of utilizing remote sensing to detect disease- or insect-infested forests is 
that the damaged trees show distinct symptoms capable of being observed remotely. 
Depending on the type or stage of damage, the symptoms may indicate the decline in 
chlorophyll/water quantity in foliage, leaf discoloration, defoliation, or treefall gaps. 
For effective monitoring, Earth observation data acquired from satellite or airborne 
sensors are expected to capture the differences in the reflected radiation from dam-
aged versus healthy trees. In this section, we base our discussion on the previous 

TABLE 8.1 (CONTINUED)
Types of Diseases and Insects, and the Corresponding Regions, Countries, 
and Case Studies

Region Type of Disease or Insect Country Case Study

Sudden oak death (Phytophthora 
ramorum)

United States Kelly and Meentemeyer 2002; 
Lamsal et al. 2011; Liu et al. 
2006, 2007; Meentemeyer et al. 
2008; Pu et al. 2008

Western spruce budworm 
(Choristoneura freemani)

United States Meigs et al. 2011, 2015

Others Aphid (Essigella californica) Australia Goodwin et al. 2005

Bark beetle (Ips grandicollis) Australia Verbesselt et al. 2009

Fungal pathogen (Sphaeropsis 
sapinea)

Australia Goodwin et al. 2005

Insect (Thaumastocoris 
peregrinus)

South Africa Oumar and Mutanga 2014; 
Oumar et al. 2013

Mopane worm (Gonimbrasia 
belina)

South Africa Adelabu et al. 2014

Pine caterpillar (Dendrolimus 
superans Butler, Dendrolimus: 
Lasiocampidae, Lepidoptera)

China Huang et al. 2010
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150 Remote Sensing for Sustainability

research efforts to demonstrate the qualifications of remote sensing for monitoring 
forest disturbances attributed to diseases and insects.

8.3.1  Spectral characteriSticS

The spectral values in a forest image scene are often biased to representing the upper 
layer traits of tree canopies. While the top-down manner of photographing vegeta-
tion lacks the ability to characterize the entire tree, it is possible to link the status of 
canopy to forest health because diseases or insects substantially affect a tree’s ability 
to photosynthesize and store moisture in foliage. One consequence is the noticeable 
change in foliage color (i.e., discoloration). For example, needles on pine trees turn 
red in the red-attack stage by mountain pine beetle (Wulder et al. 2006). Oak trees 
visually appear brown and freeze-dried as a result of sudden oak death (Kelly and 
Meentemeyer 2002). Remote sensors with the capacity to record the visible portion 
of the electromagnetic spectrum (wavelengths from approximately 400 to 700 nm) 
are able to detect these symptoms, which appear similarly in the human visual sys-
tem. However, disease- and insect-mediated forest mortality is a gradual process. 
Some early-stage symptoms cannot be easily observed; for instance, unhealthy trees 
with reduced chlorophylls may only appear to be slightly brighter than the healthy 
trees in the visible spectral range owing to reduced absorbance of the blue and red 
wavelengths by foliage (Knipling 1970). Sensors with the capacity to further detect 
the near-infrared spectrum (wavelengths from approximately 700 to 1300 nm) are 
probably more sensitive to such physiological stress. Similarly, the amount of energy 
reflected in the short-wave infrared range (wavelengths from approximately 1300 to 
2500 nm) is correlated with vegetation moisture (Laurent et al. 2005). Today’s remote 
sensing technologies are already capable of recording the radiation reflected in those 
spectral ranges. To further advance the performance of remote detection, research-
ers utilized a variety of spectral indices (i.e., combinations of spectral bands) and 
have repetitively confirmed their effectiveness in monitoring forest damage subject 
to disease and insect attacks (see case studies in Table 8.1). Examples of the indi-
ces include normalized difference vegetation index (NDVI; Tucker 1979), enhanced 
vegetation index (Liu and Huete 1995), disturbance index (DI; Healey et al. 2005), 
normalized difference moisture index (NDMI; Jin and Sader 2005), normalized dif-
ference infrared index (Jackson et al. 2004), and enhanced wetness difference index 
(EWDI; Skakun et al. 2003).

While multispectral imagery has proven its potential to assess the status of 
damaging diseases and insects, previous studies discovered that the subtle spectral 
discrepancies between healthy and damaged trees (e.g., during the previsual green 
mortality stage) can be better detected by fine-spectral resolution data, that is, dozens 
to hundreds of narrow and contiguous spectral bands acquired through hyperspec-
tral imaging (Coops et al. 2003; Hatala et al. 2010). On the basis of this technology, 
researchers have further developed narrowband vegetation indices, some of which 
were freshly designed (e.g., transformed chlorophyll absorption reflectance index; 
Haboudane et al. 2002), while the others were simple modifications of the traditional 
vegetation indices by means of substituting narrowband for broadband reflectance 
(e.g., red edge NDVI; Gitelson and Merzlyak 1994). Although not as common as the 
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151Remote Sensing of Forest Damage by Diseases and Insects

broadband indices yet, narrowband indices have shown the potential to explain the 
physiological changes in the forests suffering damage from insects (Fassnacht et al. 
2014; Oumar et al. 2013).

8.3.2  Spatial characteriSticS

Recent development in remote sensing allows us to perceive spatial details on the 
Earth’s surface at varying scales, for example, 1 km/500 m/250 m MODIS, 30 m/15 m 
Landsat, 10 m/5 m SPOT-5, 4 m/1 m IKONOS, 1.2 m/0.3 m Worldview-3, and 
centimeter-level aerial photos. This offers forest practitioners a range of choices for 
balancing the accuracy of detecting disease or insect occurrence and data acquisition 
cost. Typically, coarse to moderate-resolution imagery has been traditionally applied 
to measure forest structural change at the landscape scale. For example, de Beurs 
and Townsend (2008) applied MODIS data with a 250-m spatial resolution to moni-
tor more than 16,000 km2 of insect defoliation of hardwood forests by gypsy moth. 
Fraser and Latifovic (2005) showed that 1-km-resolution SPOT VEGETATION data 
were sufficient for mapping a 350,000-km2 area of coniferous forest mortality in 
Quebec, Canada, caused by the eastern hemlock looper. A higher-severity distur-
bance event may lead to a more satisfactory detection result, because the infected 
tree patches tend to be larger on average.

However, challenges arise if the majority of the damaged trees are within small, 
discrete patches. High–spatial resolution satellite and airborne imagery are more 
suitable for fine-scale detection and have proven to be feasible in previous studies 
(e.g., Adelabu et al. 2014; Cheng et al. 2010; Kautz 2014; Meddens et al. 2011; Wulder 
et al. 2008). It should be noted that a unique consideration of processing such type of 
data sets is the recent paradigm shift from pixel-based to object-based image analy-
sis, that is, geographic object-based image analysis (GEOBIA; Blaschke et al. 2014). 
Because a high-resolution pixel often covers a portion of a tree or a small tree cluster, 
the corresponding pixel value may contain a high spectral variation as a result of 
the complex forest 3D structure and sun–tree–sensor geometry (Chen et al. 2011). 
Compared to the traditional pixel-based modeling, GEOBIA extracts image objects 
(groups of pixels) to represent meaningful geographic objects, for the purpose of 
reducing spectral noises and increasing mapping accuracies.

8.3.3  temporal characteriSticS

The size of Earth observation data archives is growing at an unprecedented pace. 
With rich time series data, it becomes feasible to extract the trajectories of dis-
ease and insect progression over a long term (e.g., Meigs et al. 2011; Vogelmann 
et al. 2009; Walter and Platt 2013). Because most of the infected trees do not die 
instantly, many forest disease or insect studies tend to apply annual or biannual 
imagery to characterize the spatiotemporal patterns of forest change. To mitigate 
the impact of seasonal variation, multidate images are preferably collected in the 
same months or the same seasons. Of the variety of date archives, Landsat time 
series have been the most widely used (see case studies in Table 8.1). This is pos-
sibly attributed to the features of four decades of data storage with minimized 
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152 Remote Sensing for Sustainability

temporal gaps, free data access, and global coverage (Woodcock et al. 2008). 
However, as we are entering the remote sensing big data era, we expect to see an 
increasing application of diverse data archives for long-term forest health monitor-
ing in the near future.

8.4  A REVIEW OF REMOTE SENSING ALGORITHMS

To date, a variety of remote sensing algorithms have been developed to measure for-
est damage caused by diseases and insects. The main principle is to extract the dif-
ferences in spectral reflectance between healthy and infected trees, as well as among 
the infected trees during varying stages of decline. Here, we provide a brief review 
of those algorithms and categorize them into five groups: thresholding, classification, 
change detection, statistical regression, and the others, with details described below.

8.4.1  threSholding

Compared to healthy trees, damaged trees have distinct symptoms, such as reduced 
moisture, discolored foliage, and defoliated canopy. A thresholding method defines 
one or multiple thresholds to extract the pixels representing damaged trees from the 
entire forest image scene. While the operation appears simple, the success of apply-
ing thresholding largely depends on the effective description of forest symptoms and 
the accurate definition of threshold(s).

Describing the symptoms of forest damage has been primarily relying on image 
spectral indices. Some of those indices were specifically designed to assess forest 
disturbances. For example, Coops et al. (2006) created a red–green index, the ratio 
of QuickBird red to green wavelengths, to extract the red-attack damage (i.e., foliage 
color turning red from green) in the mountain pine beetle–infested coniferous forests. 
Their results confirmed the potential of using a simple threshold to red–green index 
values for separating the infected from the healthy trees. For many other studies, 
however, thresholding methods often directly employed or modified the existing indi-
ces that had not been intentionally developed for monitoring infestation. For example, 
multiple thresholds were applied to Landsat NDMI for extracting beetle-infested trees 
and forest regrowth after disturbance events (Coops et al. 2010; Goodwin et al. 2008). 
Similarly, Coops et al. (2009) calculated DI using 1-km- resolution MODIS images 
covering a part of the terrestrial land base of Canada. They found that those DI pixel 
values larger than ±1 standard deviation of the long-term mean were consistent with 
the areas flagged as infested using aerial survey. To further improve the thresholding 
performance, Skakun et al. (2003) created an EWDI through combing three differ-
ent dates of wetness bands (derived from the Landsat TM tasseled cap transforma-
tion). Likewise, Olsson et al. (2012) modified the classic NDVI index by substituting 
the green band for the red band in the equation. The new index GNDVI was found 
to outperform NDVI, and negative GNDVI values indicated damage. Overall, the 
thresholding methods are simple to implement, with thresholds typically defined with 
assistance of field survey and manual photo interpretation. One major limitation for 
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153Remote Sensing of Forest Damage by Diseases and Insects

thresholding is that it is only suitable to identify major stages of forest disturbances, 
for example, extracting heavily damaged trees from healthy ones.

8.4.2  claSSification

Land-cover classification using imagery to differentiate between land-cover types 
was developed almost immediately after the advent of remote sensing. The suitabil-
ity of using image classification to measure forest damage is based on the fact that 
the distinct symptoms of infected forests make them appear as new land-cover types. 
It also seems to be consistent and convenient to apply one classification framework 
to extract not only the damaged/healthy forests but also the other land-cover types 
coexisting with forests, for example, grasses, shrubs, built-ups, and water.

Of the variety of classification algorithms, the classic supervised maximum like-
lihood classifier (MLC) demonstrated continued success in forest disease and insect 
monitoring. For example, MLC was effectively applied to Landsat imagery for dif-
ferentiating mountain pine beetle–induced red attacks from non-red attacks (Walter 
and Platt 2013). MLC and Landsat imagery were also used to extract gypsy moth–
caused defoliation from the nondefoliated trees (Thayn 2013). In addition, previous 
studies suggested that the application of MLC to classify high–spatial resolution 
imagery has the potential to detect forest damage of multiple stages. For example, 
Leckie et al. (2005) was able to estimate jack pine budworm–induced four classes of 
discoloration (nil–trace, light, moderate, and severe) through the application of MLC 
and 2.5-m-resolution aerial imagery acquired from the multispectral electro-optical 
imaging sensor. Meddens et al. (2011) and Bright et al. (2012) independently used 
aerial photography and MLC to classify beetle-caused tree mortality into green, red 
(dead trees with red needles), and gray (dead trees without needles) tree classes with 
the same overall accuracy of 87%. When integrated with hyperspectral imagery, 
MLC was found to be a viable solution to estimate forest stress during the early pre-
visual stage of a sudden oak death outbreak (Pu et al. 2008).

Novel machine learning methods, as a complement to classic classifiers, have been 
introduced to the domain of remote sensing classification since the 1990s. Support 
vector machines (SVMs) are a successful example, which have proven to be feasible 
to detect three levels of insect defoliation ranging from nonimpacted undefoliated 
plants to partly defoliated plants and finally refoliating plants after severe defoliation 
in an African savanna (Adelabu et al. 2014). When applied to classify hyperspectral 
imagery acquired from HyMap, SVMs were found to have notable high overall accu-
racies mapping bark beetle–caused tree mortality, with the best result reaching as 
high as 97% accuracy (Fassnacht et al. 2014). Random forests (RFs) act as another 
popular machine learning method in classification. In a case study of mapping insect 
defoliation levels with RapidEye 5-m-resolution imagery, Adelabu et al. (2014) com-
pared RFs and SVMs, and found comparable results. It should be noted that one 
outstanding feature of RF is that it can rank all the input variables based on their 
importance (Breiman 2001), which facilitates result analysis by identifying the most 
crucial spectral bands or indices in disease and insect mapping.
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154 Remote Sensing for Sustainability

A subpixel classification scheme is needed if the spatial resolution of image pixels 
is too coarse to detect small, fragmented disturbances in a patchy distribution. To 
do so, spectral mixture analysis (SMA) provides a viable means, which is typically 
based on the assumption that the spectral value of each pixel is a linear combination 
of the reflectance from surface materials (endmembers) weighted by their factions. 
For example, Radeloff et al. (1999) performed SMA on Landsat TM imagery to clas-
sify jack pine budworm defoliation levels in a mixed forest stand and found a strong 
negative correlation between SMA-derived green needle fraction and field-measured 
budworm population (r = −0.94). With SMA and 0.5-m-resolution multispectral imag-
ery, Goodwin et al. (2005) quantified the fractional abundance of three endmembers: 
sunlit canopy, shadow, and soil. Their results suggested a possibility of using the sunlit 
canopy image fraction to describe crown/leader color in the forests affected by dam-
aging agents. When it comes to classifying hyperspectral imagery, the high spectral 
noises in data often challenge the performance of classifiers. To address the issue when 
using HyMap imagery, Hatala et al. (2010) employed the mixture-tuned matched-filter 
algorithm, an improved SMA through maximizing the target response and minimiz-
ing background spectral signatures, to classify whitebark pine stress and mortality.

8.4.3  StatiStical regreSSion

Statistical regression analysis allows practitioners to estimate not only the discrete 
stages of forest disturbances (e.g., damaged vs. healthy) but also continuous defolia-
tion or tree mortality levels from none to 100%. Compared to most classification 
methods, regression has the capacity to demonstrate the significance of the selected 
explanatory variables derived from remote sensing imagery. Such information can 
inform sustainable forest management, for example, predicting forest vulnerability 
in response to disease or insect attacks.

Logistic regression has been shown as a simple solution for identifying forest sta-
tus of being damaged or not. For example, this model was applied to estimate an out-
break of black-headed budworm in Western Newfoundland, Canada, with a proven 
success to distinguish susceptible trees from those that were not (Luther et al. 1997). 
However, such analysis may not be sufficient for developing effective mitigation 
strategies. Researchers have expressed higher interests in understanding the detailed 
(i.e., continuous) tree damage levels. To do so, classic multiple linear regression was 
widely used to link remote sensing–derived metrics (e.g., spectral bands, spectral 
indices, and topographic variables) with field-measured damage indicators, such as 
defoliation intensity (de Beurs and Townsend 2008; Pontius et al. 2008), basal area 
(Siderhurst et al. 2010), leaf area index (Solberg et al. 2006), foliar nitrogen and plant 
growth vigor (McNeil et al. 2007), concentration of total chlorophyll (Cheng et al. 
2010), and leaf water content (Cheng et al. 2010). Their studies also indicated the 
suitability of applying multiple regression to analyze a wide range of remote sensing 
data types (e.g., MODIS, Landsat, lidar, and the hyperspectral).

Recent sensor development has increased image spectral resolution and extended 
the coverage of data spectral range. However, this poses a challenge to regression 
modeling, that is, high dimensionality and collinearity of remotely sensed explan-
atory variables. To address this issue, Verbesselt et al. (2009) applied the least 

D
ow

nl
oa

de
d 

by
 [

G
an

g 
C

he
n]

 a
t 1

7:
22

 1
5 

D
ec

em
be

r 
20

16
 



155Remote Sensing of Forest Damage by Diseases and Insects

absolute shrinkage and selection operator (LASSO) to model bark beetle–induced 
tree mortality in Pinus radiata plantations. Compared to the standard data fitting 
method of least squares, LASSO is an alternative regularized version to minimizing 
the residual sum of squares “under a constraint on the sum of the absolute values of 
regression coefficient estimates” (Verbesselt et al. 2009). Another solution is partial 
least squares regression (also known as projection to latent structures), which finds 
new hyperplanes for minimizing the variance between impendent and dependent 
variables (Geladi and Kowalski 1986). Researchers have confirmed its effectiveness 
of mitigating the variable multicollinearity effects in studying insect-caused forest 
damage (Oumar and Mutanga 2014; Oumar et al. 2013; Wolter et al. 2008).

The aforementioned regression models are considered as fixed effects, that is, 
treating all the variables as nonrandom. However, Rullán-Silva et al. (2015) argued 
that a mixed-effects model, containing both fixed and random effects, is more appro-
priate for estimating the percentage of defoliation caused by beech leaf-miner weevil. 
The addition of random effects to a fixed-effects model was found to better account 
for the variability possibly introduced by environmental uncertainties (Rullán-Silva 
et al. 2015). While the mixed-effects models are relatively new to the field of remote 
sensing, we note that their merits have been increasingly recognized in forest ecol-
ogy (Bolker et al. 2009).

8.4.4  change detection

Change detection employs multitemporal imagery (i.e., time series data) to measure 
the spatial patterns of forest disturbances through time. In contrast with using single-
date imagery to identify damaged trees, this approach analyzes shifts in spectral 
reflectance across multiple dates. Accordingly, extra considerations are required to 
deal with spectral variation through time that arises from both forest disturbances 
and differences in atmospheric conditions and the sun–view–tree geometries (Chen 
et al. 2011; Song et al. 2001).

Previous efforts showed two ways of conducting change detection. First, the spectral 
discrepancies between multidate images are calculated through differencing the same 
spectral bands or indices from the base year (before disturbance) and the disturbance 
year(s). This is followed by applying thresholding, statistical regression, or classifica-
tion to extract the pixels containing higher spectral variation (indicating damaged trees) 
than the others (e.g., de Beurs and Townsend 2008; Townsend et al. 2012; Wulder et al. 
2008). Second, change detection focuses on measuring forest damage directly through 
all the spectral bands or indices. For example, Babst et al. (2010) applied principal com-
ponent analysis to transfer multidate NDVI images (derived from Landsat time series) 
into new principal components. They discovered that the second principal component 
contained crucial information representing the change of NDVI, which was corre-
lated with the level of defoliation caused by autumnal moth. Additionally, because the 
spectral discrepancies among the Landsat time series include both real and noisy false 
changes, Kennedy et al. (2010) developed a LandTrendr temporal segmentation algo-
rithm to capture only the salient features of the trajectory (representing real changes) 
using a multilevel model fitting strategy. This algorithm was employed by Meigs et al. 
(2011) to successfully characterize the impacts of bark beetle on tree mortality.
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8.4.5  additional approacheS

In addition to the aforementioned mainstream methods, several other algorithms 
have been developed for unique considerations in disease and insect monitoring. 
For example, the occurrence of tree dieback is associated with specific forest envi-
ronmental factors (e.g., distance from hosts to target trees; Kelly and Meentemeyer 
2002). Liu et al. (2006) modeled such ecological compatibility with Markov random 
field, which was used to refine the results from a noncontextual SVM classification.

To deal with nontraditional data types, such as lidar for characterizing forest 3D 
structure (Chen and Hay 2011; Lim et al. 2003), Zhang (2008) applied mathematical 
morphology to process lidar point clouds for identifying small gaps in mangrove 
forests owing to natural disturbances, including the outbreaks of insects. Bright et al. 
(2012) employed lidar to estimate forest aboveground carbon. When integrated with 
the beetle-caused tree mortality map from an MLC classification, the carbon storage 
map was able to clearly reveal the impact of insect severity on forest carbon loss.

8.5  CHALLENGES AND OPPORTUNITIES

Advancements in remote sensing data acquisition and analysis have remarkably 
improved the feasibility of assessing landscape-scale forest disturbances induced by 
diseases or insects. However, challenges remain. In this section, we identify some of 
those challenges and suggest potential solutions.

8.5.1  early Warning of foreSt damage

Forests that are infected by diseases or insects do not die instantly. The detection 
of early stage forest damage offers forest managers an opportunity to perform effi-
cient disease and insect control. During this stage, the infected trees may only show 
a slight decline in chlorophyll levels and leaf water content. Previous efforts have 
confirmed the potential of applying hyperspectral remote sensing to assist with early 
detection of tree stress (e.g., Fassnacht et al. 2014; Pu et al. 2008). However, most of 
the sensors were mounted on airborne platforms (e.g., CASI, HyMap, and AVIRIS), 
making data acquisition an expensive process. To date, only a few satellite sensors 
(e.g., EO-1 Hyperion) are operational, although their application has been restrained 
because of limited spatial coverage and high spectral noises. To address the chal-
lenge, developing Landsat-like hyperspectral sensors is a promising solution. For 
example, NASA’s hyperspectral infrared imager (HyspIRI) mission will mount two 
instruments on a satellite in low Earth orbit. Once launched, HyspIRI will deliver 
global coverage hyperspectral imagery at the 10-nm spectral resolution from the vis-
ible, short-wave infrared range to the thermal infrared range (NASA 2015). Another 
potential solution is to assemble a small, inexpensive hyperspectral unmanned air-
craft system (UAS; see a recent review by Pajares [2015]). While such a system still 
has small spatial coverage, its highly operational flexibility combined with a proper 
sampling strategy makes early warning feasible. One limitation, however, is the obli-
gation to meet UAS regulations and policies that may vary considerably from region 
to region.
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8.5.2  conSiStent monitoring of long-term, hiStorical foreSt damage

While several remote sensing programs (e.g., AVHRR, Landsat, or SPOT) have been 
operational for three to four decades, many new types of sensors appeared only 
recently, such as those featuring high spatial resolution, hyperspectral resolution, 
and the ability to characterize forest 3D structure. These new sensors do have a 
higher capacity to detect forest stress and mortality; however, their data archives 
often have limited temporal and spatial coverage. This poses a challenge for consis-
tently monitoring the long-term, historical impacts of diseases and insects on for-
ests. One dilemma facing many researchers is that the study area was only partially 
covered by the data acquired from high-performance sensors for limited periods. 
Choosing the data that have full coverage (e.g., Landsat) can be one solution, while 
combining data from multiple sensors can be another solution (e.g., using Landsat 
data to fill in the gaps that lack hyperspectral imagery). In the latter case, the devel-
oped algorithms should have the capacity to accommodate varying types of remote 
sensing data across spatial, spectral, and temporal scales, so that all the results can 
be compared using consistent criteria.

8.5.3  differentiating among compound diSturbanceS

Forests are a natural ecosystem. The disturbances affecting the same forested regions 
may come from a range of sources. Besides insect and disease, other natural disasters 
(e.g., wildfire and wind) or anthropogenic activities (e.g., logging) can lead to com-
pound disturbances. It is also possible that one disturbance regime (e.g., wildfire) may 
influence forest responses to another disturbance (e.g., disease), resulting in interact-
ing disturbances (Turner 2010). Recent remote sensing studies have been limited on 
the topic of differentiating between disease-/insect-caused forest damage and other 
types of damage. One major challenge is that single sensors are typically not suitable 
to complete this task. For example, in a study of estimating burn severity in a for-
est that had experienced pre-fire disease outbreaks, Chen et al. (2015b) found similar 
spectral reflectance in burned and diseased trees using Landsat imagery. Therefore, a 
likely solution is the development of a multisensor approach, taking advantage of the 
strengths from individual sensors, for example, Landsat time series for temporal analy-
sis of disease and insect progression, hyperspectral imaging for tracking the early signs 
of forest damage, and lidar for assessing the change in forest vertical profiles. Data 
integration maximizes practitioners’ ability to estimate changes in forest biophysical 
and biochemical parameters, augmenting accurate assessments of forest damage.

8.6  CONCLUSION

Global forest ecosystems face high frequencies of landscape-level disturbances 
resulting from disease and insect epidemics. Over the past decades, remote sensing 
tools have improved detection of forest disturbances in a timely and cost- effective 
manner. As sensor technologies advance, richer Earth observation data with higher 
spatial, spectral, and temporal resolutions are expected to offer better choices 
to assess varying stages of disease/insect invasion in a range of forest biomes. 
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Accordingly, algorithms for modeling spectra–disturbance relationships will need 
to be continually refined or redeveloped to take advantage of new data and novel 
landscape changes caused by nonnative, invasive pathogens and insects.
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