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Environmental disturbance regimes are more frequently being altered by historically novel events and distur-
bance interactions, which may trigger reorganizations of new ecosystem states and processes. Here we examine
synergies between emerging forest disease and wildfire to determine whether disease outbreak changes envi-
ronmental drivers of burn severity using sudden oak death and the basin complex fire in California as a case
study of novel disturbance interaction. We mapped the spatial distribution of sudden oak death tree mortality
using a new object-based filterwith 1.0 m resolution KOMPSAT-2 images.We integrated these data with a phys-
ical simulation model of burn severity informed by post-fire Landsat data. Model performance varied across
stages of disease establishment (early, middle and late) with stronger relationships occurring during later stages
of disease progression. Multiscale statistical analysis of environmental drivers of burn severity in diseased com-
pared to healthy forests showed that sudden oak death treemortality altered relationships between burn sever-
ity and the biophysical environment. Specifically, compared to the healthy forests, those affected by disease
exhibited higher landscape heterogeneity at smaller spatial scales (e.g., 25 and 50m), which has been associated
with decreased burn severity in the literature. Our results showed the opposite pattern. That is, a disease-affected
landscape comprising less connected patches and higher patch shape complexity was more likely to experience
greater burn severity. This suggests that disease-caused increases in surface fuels may have reduced the
landscape's resistance to fire and in turn increased burn severity in forest patches neighboring disease-impacted
forests.

© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

Forest ecosystems have been increasingly affected by a variety of en-
vironmental tree-mortality disturbances (Asner, 2013; Johnstone et al.,
2016). Wildfires and invasive species, including disease-causing patho-
gens and insects, are important drivers of treemortality in key forest bi-
omes worldwide (Boyd et al., 2013; Stephens et al., 2013). Although
each disturbance type has been studied from a variety of perspectives,
recent studies discovered that wildfire dynamics can be influenced by
invasion of exotic forest pathogens and insects (Metz et al., 2011;
Harvey et al., 2013). This introduces a critical question for forest man-
agers and ecologists: does pre-fire disease or insect driven mortality
alter wildfire dynamics and the associated ecological impacts (Hicke
et al., 2012; Metz et al., 2013)?

The relevance of this question is self-evident from the spatial scale
and frequency of these mortality events, yet the current state of knowl-
edge lacks a synthetic framework of how forest diseases/insects and
wildfires interact. Previous studies have attempted to analyze the direct
relationship between disease/insect occurrence and burn severity at the
stand scale. These efforts have shown specific results that could be seen
as inconsistent: some researchers discovered weak correlations be-
tween outbreak and fire impacts while others reported evidence that
this relationship could be enhanced or diminished (e.g., Metz et al.,
2011; Simard et al., 2011; Hicke et al., 2012; Jolly et al., 2012; Harvey
et al., 2013). However, in forests without active insect or disease out-
breaks, a large body of research employing physical and empirical fire
models has shown a strong tie between fire behavior and several con-
trolling environmental factors, such as landscape configuration, and
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topography (Turner and Romme, 1994; Lloret et al., 2002; Balbi et al.,
2009; Lee et al., 2009). This suggests that inconsistent results between
disease/insect impacts and burn severity could be a reflection of com-
plex environmental factors that mask or obscure outbreak-fire interac-
tions. The introduction of diseases or insects are known to alter the
physical and biological factors that affect wildfire dynamics such as in-
tensity and ecological impacts by increasing surface fuel, and
restructuring forest canopy. However, tree mortality also increases
landscape heterogeneity by decreasing canopy continuity and altering
species composition. These ecological effects are especially prominent
for generalist pathogens and insects that cause selective tree mortality
within or among landscape elements (Meentemeyer et al., 2008; Cobb
et al., 2012). Compared to a homogenous surface structure, higher het-
erogeneity could enhance the fire-resistance of a landscape (Lee et al.,
2009). To inform effective fire modeling and management in out-
break-impacted forests, it is vital to understand how disease or insect
outbreak may alter landscape structure that is known to influence fire.
This kind of investigation is a potentially valuable complement to the
stand-level investigations that currently underpin our knowledge of
outbreak-fire interactions and, ideally, would resolve inconsistencies
among studies at this spatial scale. Specifically, whether and how does
a disease or insect epidemic change the environmental factors affecting
burn severity at the landscape scale? Understanding these dynamics is
likely to positively contribute to the growing exploration of connections
between insect- or disease-induced tree mortality and wildfire impacts
(Metz et al., 2013; Simard et al., 2011).

Landscape heterogeneity has long been recognized to be scale-de-
pendent in ecology and remote sensing (Levin, 1992;Wu, 2004). Spatial
scale is a crucial factor for assessing the effect of disease or insect epi-
demic on burn severity. For example, the plant disease sudden oak
death (SOD) has a non-random, highly-localized distribution at the
landscape scale (Davidson et al., 2005). At the extent of a small field
plot or fine grain resolution (e.g., 25 m), infestation may be uniform
and homogenous causing damage on all or most trees (Cobb et al.,
2012). At this spatial extent, disease has been shown to increase burn
severity and fire-associated mortality under some disease conditions
(Metz et al., 2013). However, at a larger scale or coarser grain (e.g.,
400 m), a plot is more likely to contain a less-uniform distribution of
tree damage or mortality. This is especially true in forests with hetero-
geneous species distributions and can complicate inference when
plots are nested and have different levels of resolution. While post-fire
landscape structure was confirmed to be affected by fires (e.g., causing
short-term spatial homogenization; Chuvieco, 1999), a particularly im-
portant concern yet to be well addressed is how burn severity might be
associatedwith pre-fire landscape spatial patterns emerging from plant
community or mortality distribution.

Understanding these relationships requires spatially explicit map-
ping of forest damage by disease/insect and fire disturbances (respec-
tively); remote sensing offers a feasible solution to this important
problem. Over the past decade, research efforts have increasingly fo-
cused on extracting remotely sensed indicators of tree damage or dis-
tinct symptoms (i.e., altered spectral and spatial characteristics) as
opposed to their healthy counterparts (e.g., Kelly and Meentemeyer,
2002; Lentile et al., 2006; Wulder et al., 2006; Keeley, 2009). For exam-
ple, high-spatial resolution (h-res) imagery (typically finer than 5 m)
can achieve a measurement scale and accuracy similar to field surveys
(Wulder et al., 2006; Meentemeyer et al., 2008). Meanwhile, burn
severity mapping has benefited from the use of a range of satellite and
airborne sensors (e.g., MODIS, Landsat and AVIRIS) that can capture
the unique spectral radiance from active fires or post-fire deposits of
char, shoot, and ash (see Lentile et al., 2006; Keeley, 2009). Specifically,
remote sensing of burn severity has two groups of models: physically
based versus empirical (De Santis and Chuvieco, 2007). Empirical
models are easy to implement applying statistical functions or
thresholding to directly link burn severity with spectral responses/indi-
ces [e.g., Normalized Burn Ratio (NBR), differenced NBR, NDVI, and
differenced NDVI] (e.g., Xiao et al., 2002; Epting et al., 2005; van
Wagtendonk et al., 2004; Key and Benson, 2005; Kokaly et al., 2007).
However, their performance is typically dependent on specific sites. In
contrast, physically based simulation models have proven to be effec-
tively reducing variation in model performance across geographical
regions (Roy et al., 2006; De Santis and Chuvieco, 2007). For example,
De Santis et al. (2009) integrated two radiative transfermodels of PROS-
PECT and GeoSail to simulate the spectra of burned materials in forests.
Quintano et al. (2013) applied Multiple Endmember Spectral Mixture
Analysis (MESMA), a classic spectral unmixing approach to decompose
pixels into four components of unburned and low, moderate, and high
levels of burn severity.

In 2008, basin complex fire occurred in the Big Sur ecoregion of Cal-
ifornia, where a landscape-level permanent plot network designed to
study sudden oak death emergence and associated ecological impacts
was established between 2006 and 2007. The happenstance of fire
and disease overlap with extensive pre-fire field data provides an un-
precedented opportunity to study the influence of disease-caused tree
mortality on burn severity at different spatial scales. We ask two
inter-related research questions: did the pre-fire outbreak of sudden
oak death alter the environmental factors that control burn severity?
What was the role of spatial scale in determining disease-fire interac-
tions? To address these questions, we employed h-res KOMPSAT-2
and Landsat imagery to map forest damage caused by sudden oak
death and the basin complex fire, respectively. We then developed sta-
tistical models to link burn severity and its controlling environmental
factors comparing diseased and healthy forests across spatial scales.

2. Study area and data

2.1. Study area

The study area (36°16′N, 121°44′W) is located in the Big Sur
ecoregion on the western flank of the Santa Lucia Mountains in Califor-
nia covering 28,383ha (Fig. 1). It features aMediterranean climate and a
rugged landscape dissected by steep slopes and drainages with eleva-
tions ranging from sea level to 1571 m within 5 km of the coast
(Meentemeyer et al., 2008). Landownership in Big Sur is dominated
by state and federal governments, and local conservation organizations
(85%; Meentemeyer et al., 2008). The region primarily includes mixed
oak forests consisting of coast live oak, Shreve's oak, tanoak, bay laurel
(Umbellularia californica), and madrone (Arbutus menziesii; Davis et al.,
2010). Redwood (Sequoia sempervirens)-tanoak forests dominate wet-
ter landscape positions including ridgetops near the ocean with high
frequency occurrence of fog and canyon bottoms, also near the ocean
(Davis et al., 2010). There are also small patches of mixed coniferous
trees, primarily ponderosa pine (Pinus ponderosa), coulter pine (P.
coulteri), and Santa Lucia Fir (Abies bracteata). Chaparral shrubland, an-
nual grassland, and bare ground comprise the remainder (Davis et al.,
2010).

Sudden oak death (SOD), an emergent forest disease caused by the
non-native pathogen Phytophthora ramorum, has killed tens of thou-
sands of trees - primarily coast live oak and tanoak - in the Big Sur
area since the mid-1990s (Rizzo et al., 2005). The canopies of dead
trees change dramatically from healthy green to brown within 2–
8 years of infection (Cobb et al., 2012), which makes it possible to re-
motely detect the disease (Kelly and Meentemeyer, 2002). The spread
of P. ramorum across the landscape has a patchy distribution, and local
forest stands span a range of disease impacts and time since pathogen
establishment (Metz et al., 2011). Most pathogen dispersal occurs on a
small (1–15 m) spatial scale, but long-distance (1–2 km) dispersal
occurs during high precipitation storm systems with sustained winds
(Meentemeyer et al., 2011). In June 2008, the basin complex fire was ig-
nited by a dry lightning storm, which occurred following several
months of low precipitation, and warm temperatures that reduced
fuel moisture levels. The basin fire burned virtually all forest types



Fig. 1. Study area located in the Big Sur ecoregion on the western flank of the Santa Lucia Mountains in California, and represented by two remote sensing color composites, including
KOMPSAT-2 bands 4 (red), 1 (green), and 2 (blue), and Landsat TM bands 3 (red), 2 (green), and 1 (blue). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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within Big Sur including those with P. ramorum hosts that we focus on
here. In total, the basin fire affected a total of over 95,000 ha (USDA
Forest Service, 2008).

2.2. Field data

A total of 61 circular plots (500 m2 each) were burned during the
basin fire; these plots were established as part of the previously noted
long-term monitoring network (280 plots) designed to understand
pathogen spread factors and measure P. ramorum caused forest mortal-
ity rates and ecological impacts (Meentemeyer et al., 2008; Metz et al.,
2012). A full census of vegetation was conducted in each plot: all
stems N1 cm diameter at breast height (dbh) were mapped, measured,
and assessed for disease symptoms; all understory plants were identi-
fied to species and rated for cover; canopy cover was estimated with
by averaging four densitometer measurements taken at ~1 m height
at four cardinal directions at plot center. The locations of plotswere ran-
domly selected within mixed evergreen forests (often oak-dominated).
One year prior to the basin complex fire, 42 of these plots were con-
firmed to have been invaded by P. ramorum through direct pathogen
isolation; 19 of these plots had no disease symptoms and the pathogen
was never isolated from any trees within or nearby (see Metz et al.,
2011). Following the containment of the fire, these plots were revisited
between September and October of 2008 to assess burn severity in five
forest strata: (1) substrate layer, measured as changes to coarse woody
debris, soil, duff, and leaf litter; (2) herb layer, changes or responses of
vegetation b1 m; (3) shrub layer, changes of vegetation higher than
1 m but b5 m; (4) intermediate-sized tree layer, any trees higher than
5 m but standing under the dominant trees (intermediate canopy posi-
tion); and (5) dominant tree layer (Metz et al., 2011). To quantify the
plot-level burn severity, the GeoCBI field protocol (De Santis and
Chuvieco, 2009) was adopted, where a rating from 0.0 to 3.0 represents
the degree of burn severity from low to high. We employed GeoCBI
rather than the classic Composite Burn Index (CBI, Key and Benson,
2005), because it takes into account the weighting factor Fractional
Cover (FCOV) to describe burn severity. More importantly, GeoCBI
considers the fractional cover of different vegetation strata, which bet-
ter reflects the spectralmixture of those components from remote sens-
ing with a ‘top-down’ view. This approach has been shown to be
suitable for remote-detection based study (De Santis and Chuvieco,
2009). We found our densitometer estimate of canopy cover was pref-
erable over total basal area or stem density estimated from plot-based
vegetation surveys as this measure 1) directly estimated cover of dead
trees and 2) heterogeneous canopy cover within plots. Therefore,
FCOV per forest stratumwas calculated bymultiplying the pre-fire can-
opy cover and the post-fire proportion of green vegetation.

2.3. Topographic data

The regional topographic condition was represented by a 30 m res-
olution DEM (digital elevation model), derived from the Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
Global Digital Elevation Model Version 2 (GDEM V2) (ASTER GDEM
Validation Team, 2011). Slope and aspect were further generated from
the DEM, with the consideration that these two factors alter microcli-
mate (e.g., wind speed and solar insolation) and therefore may have
contributed to the variation in burn severity (Rogan and Franklin,
2001). Another topography-related factor Topographic Moisture Index
(TMI) was also used to assess the potential impact of surface wetness
on burn severity. The TMI variable was calculated from the DEM-gener-
ated parameters includingupstream contributing area a and slope b (Eq.
(1); Beven and Kirkby, 1979) according to:

TMI ¼ ln a= tan bð Þ ð1Þ

2.4. KOMPSAT-2 imagery

Five scenes of h-res KOMPSAT-2 satellite datawere acquired on June
23, 2007 for the purpose of detecting P. ramorum caused tree mortality
which can be non-random and patchy at fine spatial scales
(Meentemeyer et al., 2008). All the images were ordered at the level



Table 1
Object-based input features used in disease mapping.a

Feature Description

Spectral:
▪ Mean Mean includes average intensity values for each of the four

spectral bands, and maximum differential values between
the brightest and the darkest image bands.

Texture:
▪ Standard

deviation
Standard deviation is calculated for each of the four spectral
bands.

Geometry:
▪ Compactness
▪ Length/width

ratio
▪ Roundness
▪ Shape index

Compactness is the product of the length and the width,
divided by the number of pixels. Length/width ratio is
calculated using the main line of an object. Roundness
describes the similarity between an image object and an
ellipse, and it is calculated by the difference of the enclosing
ellipse and the enclosed ellipse. Shape index represents the
smoothness of an object, and it is calculated from the length
of the object divided by four times the square root of its area.

a See equations in the eCognition Developer Reference Book (Trimble, 2012).
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of 1G, where geometric and radiometric corrections were completed by
the vendor. Each image scene included four 4 m multispectral bands
[i.e., band 1 (520–600 nm, green), band 2 (450–520 nm, blue), band 3
(760–900 nm, near-infrared), and band 4 (630–690 nm, red)] and one
1 m panchromatic band (500–900 nm), with a radiometric resolution
of 10 bits. To exploit both the spatial and multispectral content of the
imagery (i.e., obtaining 1mmultispectral data), a principal components
spectral sharpening techniquewasused to fuse each sceneofmultispec-
tral and panchromatic bands (Welch and Ahlers, 1987). This pan-sharp-
ening method has proven effective in a forest environment using
Quickbird imagery that has the similar spectral and spatial characteris-
tics as the KOMPSAT-2 data (Chen et al., 2011). We mosaicked all the
five scenes using the overlapped area from one image to balance the
data range of its neighboring image, whichwas followed by the applica-
tion of the dark object subtraction algorithm to derive surface reflec-
tance (Chavez, 1996). The pre-processed KOMPSAT-2 mosaic is shown
in Fig. 1, where only a small portion of the area was not covered within
the fire boundary.

2.5. Landsat imagery

A Landsat-5 TM image scene covering the same study area (Path 43,
Row 35) was acquired on September 2, 2008 from the USGS archive in
L1T format (radiometrically, geometrically and topographically
corrected) to represent post-fire forest conditions in the study area
(Fig. 1). The image had solar zenith angle of 36.2°, and solar azimuth
angle of 135.9°. Here, the image scenewas a surface reflectance product
delivered by USGS. While a new Landsat Collect 1 L1TP product was
published by USGS (in September 2016) with a higher terrain precision
to support time-series processing analysis (USGS, 2016), this single-
date L1T image scene had sufficient location accuracy for the study.

3. Methods

3.1. Disease mapping

Previous studies have confirmed the feasibility of using 1 m resolu-
tion remotely sensed imagery to extract P. ramorum caused dead trees
(Kelly and Meentemeyer, 2002; Liu et al., 2006), the pan-sharpened
KOMPSAT-2 data were expected to contain sufficient spatial details for
disease mapping in this study. At the high resolution, each dead tree
crown or dead crown cluster was comprised of a group of connected
pixels (i.e., image-object). Meentemeyer et al. (2008) mapped P.
ramorum caused tree mortality in Big Sur and found Geographic Ob-
ject-Based Image Analysis (GEOBIA) was suitable to extract and analyze
these image-objects. Specifically, image segmentation was conducted
on the KOMPSAT-2 mosaic in the eCognition Developer 8 environment
(Trimble Navigation, Sunnyvale, California). Three parameters were de-
fined, including scale (60), shape (0.5) and compactness (0.8). The
value of 60 was chosen for the purpose of accurately extracting clusters
of trees that were relatively small and homogenous, e.g., themajority of
trees within image-objects were either dead or healthy. The large com-
pactness value was chosen to generate compact tree objects that could
also have relatively smooth boundaries (Chen et al., 2012a).We applied
the classic nearest neighbor classifier in eCognition to categorize all the
image-objects into four land-cover classes, including healthy forest, dis-
ease-impacted forest, bare ground, and grass/shrub. The inputs of clas-
sification comprised three groups of features calculated at the object
level: spectral (mean), texture (standard deviation), and geometry
(compactness, length/width ratio, roundness, and shape index) (Table
1). In total, 13 features were calculated (refer to Table 1 for detailed de-
scription of each feature). To increase processing efficiency while
retaining the classification performance, we reduced the number of
input features by following a rule suggested by eCognition that the com-
bination of features produces the largest averageminimumdistance be-
tween the samples of different classes, while the addition of extra
features only marginally contributes to the improvement of classifica-
tion accuracy.

The transitional zones (i.e., from dense forest to shrub/grass or bare
ground) in our study area posed a major challenge to the accurate ex-
traction of dead tree crowns. It was discovered in our preliminary
tests that many image-objects within the transitional zones were
misclassified as disease-impacted forest even if the trees were in fact
healthy. This was mainly owing to the fact that each of these objects
often contained mixed land-cover classes, such as sparsely distributed
trees or small tree clusters, bare ground and shrubs/grass (Fig. 2). To ad-
dress such issue,we developed an object-basedfiltering algorithm com-
bining detailed forest spectral information inside image-objects and
across their neighbors. Each object-based filter was defined to contain
one center image-object and its immediately adjacent neighboring ob-
jects, which was followed by moving the filter across the classified
image generated from the previous section. Specifically, (a) for any dis-
ease-impacted image-object having more than or equal to one bare
ground or shrub/grass neighbor, it was considered to be located in the
transitional zones for further analysis. (b) The internal spectral variation
of the selected image-objects was used to examinewhether the prelim-
inary classification results were correct. We calculated the ratio of the
number of tree-shadow pixels to the number of sunlit-healthy-crown
pixels within each object. Please note that we did not focus on all the
sunlit crowns. Instead, we only focused on the sunlit ‘healthy’ crowns.
For a healthy forest, the ratio was normally lower than 1.0. This was a
byproduct of tree clustering that cast shadows into canopy gaps and/
or the boundaries of tree clusters. For remote sensing using the top-
down view, it is difficult to capture the shadow beneath every sunlit
canopy. For a disease-impacted forest, the ratio was normally higher
than 1.0, because dead trees contained a small percentage of healthy
crowns, while the shadows were from both healthy and dead crowns.
The KOMPSAT-2 near-infrared bandwasmanually interpreted to deter-
mine the thresholds for identifying tree shadows (reflectance value
smaller than 0.28) and sunlit-healthy crowns (reflectance value larger
than 0.56), based upon the knowledge that this band typically has the
highest contrast in forest environments among the four analyzedmulti-
spectral bands (Chen et al., 2011). (c) The center image-object previous-
ly classified as disease-impacted was reassigned if its ratio analysis
indicated healthy trees in the object. To simplify our analysis, we
assigned one single class to each image-object through a simple major-
ity rule, where the newly assigned class was consistent with the one
having the largest coverage across the neighbors.

Calibration (training) and validation of the classification andfiltering
processes were conducted using the combination of field data, and
image manual interpretation on the KOMPSAT-2 and Google Earth



Fig. 2. (i) A disease-impacted forest object A (surrounded by object neighbors B to H), versus (ii) a healthy forest object A (surrounded by object neighbors B to H). The color combinations
were NIR-R-B.

Table 2
Descriptions of the extracted environmental factors at scales of 25, 50, 100, 150, 200, and
400 m.

Factor Description

Landscape configuration:
▪ ED ▪ Edge density
▪ CONTAG ▪ Contagion index
▪ SHDI ▪ Shannon's diversity index
▪ COHESION ▪ Patch cohesion index

Topography:
▪ Elevation ▪ Mean elevation
▪ Slope ▪ Mean slope
▪ Aspect ▪ Mean aspect
▪ TMI ▪ Mean TMI (Topographic Moisture Index)
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(Mountain View, California, USA) high resolution imagery that were
taken on July 29, 2007, close to the date when the KOMPSAT-2 data
were acquired. A total of 200 points were collected following the ran-
dom sampling strategy, with 50% of them used for calibration; while
the remainderwas used for validation. Finally, a classic confusionmatrix
and kappa statistic were reported for accuracy assessment.

3.2. Burn severity mapping

Burn severity mapping was carried out using a post-fire Landsat TM
image and a physical simulation model proposed by De Santis et al.
(2009). This model was developed linking the leaf-level PROSPECT
(Jacquemoud, 1990) and canopy-level GeoSail (Verhoef and Bach,
2003) radiative transfer models, for the purpose of estimating various
degrees of burn severity in Mediterranean ecosystems, directly applica-
ble to forests of the Bug Sur region. Here, we did not choose empirical,
statisticalmodels, because such type ofmodels using spectral indices in-
cluding NDVI, dNDVI (differenced NDVI), NBR (Normalized Burn Ratio),
or dNBR to estimate burn severity were found to have high variation in
performance across geographical sites (Roy et al., 2006; De Santis and
Chuvieco, 2007), possibly reducing the generalization capacity of our
findings.

Model parameterization was conducted for PROSPECT and GeoSail,
respectively. More specifically, the leaf-level PROSPECT model was pa-
rameterized to simulate spectra of two leaf types (green and brown),
soil, dark charcoal, and light charcoal, which were further used as
input for parameterizing the GeoSail model, making it possible to
scale up from leaf to canopy level. The output of GeoSail was converted
to a Look-up Table (LUT), comprised of 30 reference spectra
(endmembers) corresponding to GeoCBI values from 0.0 to 3.0. These
spectra were organized as a spectral library and, then, used as reference
in the Spectral Angle Mapper supervised classification (Debba et al.,
2005; Kruse et al., 1993) of the Landsat TM image. The result was a
burn severity map, in which the corresponding GeoCBI value was
assigned to each pixel of the post-fire image [see details ofmethodology
in De Santis et al. (2009)]. Validation was performed comparing field-
measured and simulated burn severity GeoCBI values.

3.3. Multiscale extraction of environmental factors

The environmental factors used in the study included landscape con-
figuration, and topography.While there are a variety of factors affecting
fire behavior and burn severity, our emphasis was the spatial patterns
(i.e., landscape configuration) that were altered by sudden oak death
emergence, as well as topographic factors that are crucial drivers of
burn severity. Specifically, we employed landscape metrics that have
demonstrated effectiveness in spatial pattern analysis (Turner, 1989;
Wu et al., 2003; Coops et al., 2010). As pointed out by Godwin et al.
(2015), many of these metrics have high correlations with each other,
and no singlemetric is able to represent all aspects of the complex land-
scape structure. Here, we evaluated five representativemetrics from the
disease map: edge density (ED), contagion index (CONTAG), Shannon's
diversity index (SHDI), and patch cohesion index (COHESION) [Table 2;
refer to McGarigal (2014) for equations]. These metrics were chosen to
represent four aspects of landscape patterns, including shape, disper-
sion/interspersion, diversity, and connectivity, respectively. They have
been shown to be essential for various aspects of forest ecological func-
tion, such as analyzing the relationship between forest fragmentation
and pine beetle outbreaks or wildfire in previous studies (e.g., Lee
et al., 2009; Coops et al., 2010). The Fragstats package was employed
in this study to calculate ED, CONTAG, SHDI and COHESION
(McGarigal, 2014). The 8-neighbor rule was chosen for patch delinea-
tion treating both cardinal and diagonal pixels/cells as adjacent neigh-
bors. This rule has been found to generate appropriate patches in
previous studies (e.g., Linke et al., 2005; Richardson and Moskal, 2011;
Godwin et al., 2015). Topographic factors included mean values of ele-
vation, TMI (Topographic Moisture Index), slope, and aspect (Table 2;
see data description in Section 2.3). In this study, we did not evaluate
the impact of weather on burn severity, because such products were
mainly developed at coarse resolutions and cannot meet our needs of
assessing the multiscale effects.

All the factors were derived from 160 circular plots. Each of them
was defined to have six sizes (diameter of 25, 50, 100, 150, 200, or
400 m) to account for the scale of impact from plot to landscape levels.
That is, the center location of each plot was fixed across scales. For each
plot, the change of scales was accomplished by changing the radius of
the circular plot. Scale determination reflects the ecological characteris-
tics of the Big Sur landscape. At the smallest plot scale (25 m), disease
and fire impacts were observed to be relatively uniform and homoge-
nous. Disease-impacted forests had greater than expected mortality
among species that are often resilient to fire, a finding consistent with



223G. Chen et al. / Remote Sensing of Environment 195 (2017) 218–229
a previous stand-level study (Metz et al., 2013). Host species and topog-
raphy started to show considerable variation at the scale of 100 m. At
the 400m plot scale, our study area revealed high spatial heterogeneity,
which affected the spatial distributions of both disease and fire. To en-
sure a balanced representation of both healthy and disease-impacted
forests, half of the plots were randomly extracted from the healthy for-
ests using the land-cover classification map generated from Section 3.1,
while the other half were from the disease-impacted forest class. At a
large scale (e.g., 400 m), a plot could possibly contain both diseased
and healthy trees. Here, we used a threshold of 75% to define each
plot. That is, a plot was treated as diseased (or healthy) if N75% of the
trees were affected by sudden oak death (or healthy). To ensure mini-
mized spatial autocorrelation among the plots, we conducted a
semivariogram analysis in ArcGIS environment (Esri, Redlands, Califor-
nia, USA), and found the effective distance of spatial autocorrelationwas
600 m, which is smaller than the average distance between plots. We
also set up a minimum distance value of 400 m between any two plot
centers to avoid overlaps.

3.4. Statistical analyses

We developed generalized linear mixed models (GLMM) to link
burn severity and the extracted environmental factors for healthy and
disease-impacted forests, respectively. To test the scale effect, we also
developed GLMMs at all the six scales. The identity link function was
employed in GLMMs, because the observed burn severity followed log-
normal distributions. Use of GLMMs allowed us to include random ef-
fects of plots within site, an approach recommended for ecological
modeling when the data or experimental design has a nested hierarchy
(Bolker et al., 2009). The models were developed at a 0.05 significance
level using Akaike's information criterion (AIC) for determining the
best model. To reduce multicollinearity, variance inflation factor (VIF)
was calculated for all the predictors. By following a common rule of
thumb, the explanatory variables were selected where VIFs were small-
er than 10 in the final models. The development of all themixedmodels
were completed in SAS environment (Cary, North Carolina, USA).

4. Results

4.1. Disease mapping

The object-based classification selected five features (out of a total of
13) as input, including the maximum differential value, stand deviation
for band 2 (blue), stand deviation for band 3 (near infrared), compact-
ness, and length/width ratio. The results suggested the most accurate
approach would employ all the three groups of features (spectral, tex-
ture, and geometry) in mapping P. ramorum caused tree mortality at
the object level.

The object-based filtering algorithm resulted in a decrease of the
spatial coverage of dead trees from 4.8% to 2.7% (Fig. 3). Although the
absolute change in dead trees is a relatively small number, this was a
43.8% reduction in our dead tree estimate, which also represented a
total area of 596 ha. The object-based filtering algorithm also resulted
in increased estimates of bare ground and shrub/grass lands from
13.6% to 14.6%, and from 22.3% to 23.5%, respectively. Estimates of
healthy forests amount and extent minimally changed likely because
healthy forest objects were more heterogeneous. Compared to the
bare ground and shrub/grass objects, healthy forests often had smaller
object sizes. The accuracy of the final disease map (Fig. 3) was assessed
with a confusion matrix and the derived Kappa statistic (Table 3). Spe-
cifically, the classification of healthy forest achieved the highest accura-
cies (user's accuracy: 95.24%; producer's accuracy: 86.96%). This was
followed by the extraction of disease-impacted forest (user's accuracy:
80.00%; producer's accuracy: 85.71%), shrub/grass (user's accuracy:
84.00%; producer's accuracy: 84.00%), and bare ground (user's accuracy:
66.67%; producer's accuracy: 80.00%). The total accuracy and Kappa sta-
tistic were 85.00% and 0.85, respectively.

4.2. Burn severity mapping

The estimated burn severities from the employed radiative transfer
modelswere found to overestimate burn effects. A comparison between
estimated and field-measured GeoCBI values was conducted in healthy
and diseased forests at three stages: 1) early stage where trees still re-
tain their dead foliage (dried, brown leaves) and fine twigs; 2) middle
stage where standing dead trees have lost fine crown fuels and the
snags and large branches begin to fragment and fall; and 3) late stage
where most trees have fallen and accumulated as ground fuels (Metz
et al., 2013; Chenet al., 2015a). In healthy forests, the estimated burn se-
verity and field plot data (ground truth data) showed a relatively high
agreement (r = 0.86; RMSE = 0.53; Fig. 4). In contrast, P. ramorum
caused tree mortality was found to introduce higher uncertainties in
burn severity mapping. The early-stage infestation led to a relatively
weak relationship (r = 0.35; RMSE = 0.73; Fig. 4); and the middle-
stage showed a similar result (r = 0.36; RMSE = 0.56; Fig. 4). At
the late-stage, the correlation between the two types of GeoCBI values
increased (r = 0.80; RMSE = 0.51; Fig. 4) to the point where the
burn severity model performance was similar to healthy forests. The
burn severity was dominated by moderate (1 ≤ GeoCBI ≤ 2) to severe
(2 ≤ GeoCBI ≤ 3) impacts for most of the study area, although notable
areas of lower impact in canyon bottoms is apparent from the burn
severity map (Fig. 5). Lower burn severity was also common in the
northern part of the study region.

4.3. Linking burn severity and environmental factors in healthy and dis-
eased forests

Environmental factors showed significant effects on burn severity
but the effects of environment differed between healthy and disease-
impacted forests. For healthy forests, the topographic variable elevation
was a consistent factor driving burn severity in all the GLMMs (Table 4).
Of the six tested scales, elevation was the sole significant explanatory
variable at four scales with plot sizes ranging from 25, 50, 100 to
150 m. Landscape configuration variables did not demonstrate any sig-
nificant effect on burn severity at the same spatial scales. With increas-
ing observational scale to 200 and 400 m, the COHENSION variable
representing connectivity of landscape patches also significantly influ-
enced fire behavior, alongwith elevation (Table 4).We found a positive
relationship between elevation and burn severity and a negative rela-
tionship between landscape connectivity and burn severity.

Disease infection altered the relationship between burn severity and
its controlling environmental factors. In common with healthy forests,
elevation was the sole explanatory variable of burn severity in dis-
ease-impacted forests at the 25m scale. However, the landscape config-
uration variables had significant effects on burn severity at the scales of
50, 100, 150, and 200 m in disease-impacted forests (Table 5). Those
variables included not only COHENSION, but also ED (shape of patches)
and CONTAG (dispersion/interspersion of patches; Table 5).

5. Discussion

5.1. Assessment of disease mapping

Among the three groups of features (i.e., spectral, texture and geom-
etry) needed to map P. ramorum caused tree mortality, maximum dif-
ferential value calculated in a healthy forest was typically from near
infrared (brightest) and green (darkest) bands. For the disease-impact-
ed forests, the spectral reflectance in the near infrared band was re-
duced, sometimes reaching levels lower than the red or blue bands.
Compared to an object classified as a healthy forest, a disease-impacted
forest object typically had a smallermaximumdifferential value; but the



Fig. 3. Final disease map generated using object-based classification and object-based filtering.
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range of this value often overlapped with that of a shrub/grass object.
The texture features calculated from bands 2 and 3 helped differentiate
themajority of forest objects (high variation) from the bare ground ob-
jects (low variation). Additionally, shrub/grass objects were relatively
homogenous making them distinguishable from the forest objects.
Complex sun-surface-sensor geometry can exert a high impact on the
shape of image-objects in object-based image analysis (Chen et al.,
Table 3
Confusion matrix and kappa statistic of the final disease mapping result.

User class Reference class

Healthy forest Disease-impacted forest

Healthy forest 40 1
Disease-impacted forest 1 12
Bare ground 4 1
Shrub/grass 1 0
Total 46 14
Producer's accuracy (%) 86.96 85.71

Overall accuracy = 85.00%; Kappa statistic = 0.85.
2012b), while variation in tree 3D structure can further complicate for-
est object shape. The serrated edges of forest patches were found to be
more irregular than those of non-forest objects, which resulted in low
levels of compactness and higher length/width ratios.

Ideally, an image-object is internally homogenous representing one
single land-cover class. However, Fig. 2 shows that multiple ground fea-
tures (e.g., vegetation and bare ground) may be grouped into a single
Bare ground Shrub/grass Total User's accuracy (%)

0 1 42 95.24
0 2 15 80.00
12 1 18 66.67
3 21 25 84.00
15 25 100
80.00 84.00



Fig. 4. Comparisons between field-measured GeoCBI and estimated GeoCBI across four types of forests: healthy, and early-, middle-, and late-stage sudden oak death progression.
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object. This phenomenon is most frequent and potentially problematic
in the transitional zones where the defined scale (used in segmenta-
tion) was too coarse to extract these features individually. It should be
noted that the ‘best scale’ did not exist in our case study because it
may vary fromone transitional zone to another anddependon the land-
scape characteristics, including variation in fragmentation levels. Al-
though misclassification is present in our final model products, object-
based filtering increased accuracy of disease mapping over typical ob-
ject-based classification, which was hampered by overestimation of
infested trees (Fig. 3). It should also be noted that the remote detection
of disease-caused tree damage was biased to certain stages where in-
fected trees still showed dried foliage and/or branches. Disease or insect
caused mortality remains challenging to detect with regular multispec-
tral sensors (such as Landsat) when trees retain green pigment or at the
late stage whenmaterial has been transferred to the forest floor but un-
derstory vegetation or regeneration is present (Chen andMeentemeyer,
2016).

The spatial distribution of disease-impacted forests in the classifica-
tion map (Fig. 4) indicated that tree mortality mostly occurred on the
western, coastal portion of the region. A previous study that mapped
P. ramorum caused tree mortality up to 2005 in Big Sur, found similar
spatial patterns and their results revealed that most of the host vegeta-
tionwas located in the sameportion of the landscape that contained the
majority (63%) of dead trees (Meentemeyer et al., 2008). Although the
data used by Meentemeyer et al. (2008) were two years prior to our
data acquisition and the diseasemay have developed during this period,
the spatial patterns of disease impacts remained similar to those pre-
dicted by spatial spreadmodels aswell as continued field plot resurveys
(Meentemeyer et al., 2011; Metz et al., 2012). The change reflects the
strong influence of climate and host distribution on sudden oak death
spread and impacts.

5.2. Assessment of burn severity mapping

Our results clearly showed the challenges of estimating spatial pat-
terns of burn severity in P. ramorum affected forests. At the early and
middle infestation stages, the burn severity model that performed rela-
tively well in healthy forests had inferior performance for these disease
stages (Fig. 4). Dead tree crowns have lower foliage water content rela-
tive to healthy trees (Kuljian and Varner, 2010) and it was possible that
the spectral reflectance from these crownswas similar to those affected
by the fire. The high spectral similarity may have confused the PROS-
PECT and GeoSail models, which treated a portion of the diseased
trees as affected by fire. Using land surface temperature derived from
the Landsat thermal band(s) could be a potential solution to improve
the accuracy of burn severity mapping (Quintano et al., 2017). In addi-
tion, as suggested by Chen et al. (2015b), high-spectral resolution sen-
sors (e.g., MASTER) with mid- and thermal-infrared channels are
more sensitive to the spectral variation caused by disease and fire. By
complementing these data sources with Landsat, it may be possible to



Fig. 5. Burn severity map of the study area.

Table 4
Estimates for predictors of the six evaluated scales, with results obtained by generalized
linear mixed models in healthy forests.

Scale Predictor Estimate Standard error t Value

25 m Intercept 1.0094 0.1958 5.16⁎⁎⁎

Elevation 0.0001 0.0000 3.08⁎⁎

50 m Intercept 1.1182 0.2405 4.63⁎⁎⁎

Elevation 0.0001 0.0000 3.12⁎⁎

100 m Intercept 0.8784 0.2500 3.51⁎⁎⁎

Elevation 0.0003 0.0000 4.10⁎⁎⁎

150 m Intercept 9.7171 5.7442 1.69
Elevation 0.0003 0.0001 4.15⁎⁎⁎

200 m Intercept 12.2343 5.2078 2.35⁎

Elevation 0.0003 0.0001 4.15⁎⁎⁎

COHESION −0.1142 0.0526 −2.17⁎⁎⁎

400 m Intercept 33.7411 7.5244 4.48⁎⁎⁎

Elevation 0.0003 0.0001 5.42⁎⁎⁎

COHESION −0.3291 0.0760 −4.33⁎⁎⁎

⁎ p b 0.05.
⁎⁎ p b 0.01.
⁎⁎⁎ p b 0.001.
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achieve a higher accuracy in burn severity mapping. However, high-
spectral resolution sensors are typically available on airborne platforms,
which complicates their acquisition. We also found that the perfor-
mance of the simulationmodel was greater for the later stage of disease
progression where fallen trees often created canopy gaps. The accumu-
lation of ground fuels in these late-stage disease conditions has been
shown to be associated with greater soil burn severity and fire-caused
tree mortality. These patterns suggest the ecological interactions be-
tween fire and disease are also dependent on the timing of fire given
that sudden oak death creates both spatially and temporally heteroge-
neous fuel conditions (Metz et al., 2013; Cobb et al., 2016). Various
stages of disease progression introduced different levels of uncertainties
in remote detection andwhile such uncertainties were unavoidable, the
burn severitymapping result met our accuracy criteria of RMSE b25% of
the total range of index for burn severity applications (De Santis and
Chuvieco, 2007). In our case, the maximum RMSE level is 0.75, which
our models never exceeded. We are also aware of the time lag effect
in our image and field data collection, which were two months after
fire containment. This was mainly due to safety considerations and



Table 5
Estimates for predictors of the six evaluated scales, with results obtained by generalized
linear mixed models in disease-impacted forests.

Scale Predictor Estimate Standard error t Value

25 m Intercept 5.3616 0.1629 32.92⁎⁎⁎

Elevation 0.0002 0.0000 3.12⁎⁎

50 m Intercept 0.5524 0.1830 3.02⁎⁎

Elevation 0.0001 0.0000 3.14⁎⁎

ED 0.0001 0.0000 2.59⁎

100 m Intercept 8.1406 2.7837 2.92⁎⁎

Elevation 0.0001 0.0000 3.12⁎⁎

COHESION −0.0773 0.0278 −2.78⁎⁎

150 m Intercept 12.7534 3.1074 4.10⁎⁎⁎

Elevation 0.0002 0.0001 3.15⁎⁎

CONTAG 0.0027 0.0009 2.88⁎⁎

COHESION −0.1237 0.0312 −3.97⁎⁎⁎

200 m Intercept 0.8451 0.2454 3.44⁎⁎⁎

Elevation 0.0001 0.0001 2.40⁎

ED 0.0001 0.0000 2.62⁎

400 m Intercept 4.2840 4.9250 0.87
Elevation 0.0001 0.0001 2.44⁎

⁎ p b 0.05.
⁎⁎ p b 0.01.
⁎⁎⁎ p b 0.001.
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logistical limitations in field campaign. We recognize that this effect
could possibly change the estimation of burn severity in some areas,
hence affecting our conclusions. However, Landsat and field data were
acquired in the similar time window, which minimized the impact of
this time lag effect on remote sensing modeling.

5.3. Effect of plant disease on forest burn severity

Both types of GLMMs developed in healthy and diseased forests
demonstrated the importance of elevation on burn severity during the
basinfire. In our study area, themodeling results indicated burn severity
was greater in forests at higher elevations (Table 4; Table 5). This pat-
tern is also revealed by higher burn severities along ridgetops in the
study region (Fig. 5). Elevation-burn severity patterns were consistent
across spatial scales and disease conditions. Environmental controls of
burn severity that reflect landscape configuration were found to vary
between healthy and disease impacted forests. In healthy forests, the
connectivity of landscape patches (i.e., COHESION) became a significant
contribution to burn severity at the scale of 200 m, where tree species
became more heterogeneous and land cover types would often include
tree, shrub/grass and bare ground. Smaller COHESION values suggested
more shrub/grass patches in healthy forest stands. Those patches were
found with higher burn severity. Diseased forests showed a higher
level of heterogeneity even at smaller scales. As noted by Davidson
et al. (2005), sudden oak death typically demonstrates non-random,
highly-localized distributions due to variation in host distribution and
mortality rates of dead trees (see also Cobb et al., 2012; Metz et al.,
2012). Disease increased landscape heterogeneity in the mixed oak
and redwood-tanoak forest types where P. ramorum host densities are
also greatest. Our burn severity model is consistent with this pattern
in that landscape configuration had significant impacts at the small
scale of 50m.We also found that burn severity in disease-impacted for-
estswas influenced by awider range of factors related to landscape con-
figuration including dispersion and patch shape. This pattern suggests
disease-caused fuels accumulation either in the canopy (early and mid
stage) or surface (later stage) may have influenced burn severity in
nearby vegetation including ecosystems where P. ramorum does not es-
tablish or causes mortality.

Lee et al. (2009) argued that a more heterogeneous landscape struc-
ture tends to reduce fire risk and burn severity in a pine dominated for-
est. In contrast, our study revealed a modification of these relationships
with disease, likely through changes in fuel levels and distribution
across the landscape. In Big Sur, a landscape comprising less connected
patches (smaller COHENSION values) and higher patch shape complex-
ity (larger ED values) was more likely to experience greater burn sever-
ity. These patterns are consistent with fuels accumulation in diseased
areas resulting in impacts to adjacent forests, either through more fre-
quent high fuels locations (higher CONTAG values) or greater shared
borders between areas of higher fuels accumulation and non-disease
impacted forests (higher ED values). In a case study of forest fire in Cat-
alonia, Spain, González et al. (2005) compared two types of metrics in
forest fire risk modeling, including the non-spatial mean fire resistance
of the landscape, and the spatial landscape configuration. Among all the
tested metrics, the non-spatial metric was found to be the most im-
portant factor affecting fire behavior. This finding is a useful contrast
to our study region given that both studies share a similar Mediterra-
nean climate. Although sudden oak death increased landscape het-
erogeneity, it also reduced the mean fire resistance of the
landscape likely through a well-documented increase in fuel loads
in diseased forests (Kuljian and Varner, 2010; Cobb et al., 2012;
Metz et al., 2013; Cobb et al., 2016). Our results indicated that for
sudden oak death and the basin fire, reduced fire resistance may
have played a more important role than the increased spatial hetero-
geneity in affecting burn severity.

The extent towhich these findings are common to other forest types
is uncertain given the general lack of studies examining outbreak-fire
interactions (Simard et al., 2011;Metz et al., 2013). The fewdata-driven
examples suggest these relationships are dependent on biophysical fac-
tors that influence fire dynamics across or between regions. For exam-
ple, in a study of lodgepole pine (Pinus contorta) impacted by bark
beetle, the probability of transitions from ground fire to canopy fire de-
creasedwith the transfer of dead foliage from the canopy to the soil sur-
face (Simard et al., 2011). The transition of fine fuels from the canopy of
P. ramorum-killed trees to the soil surface is also likely to reduce the po-
tential for crown fire in these systems (Kuljian and Varner, 2010), al-
though with the additional impacts of increased soil impacts and
mortality of trees that otherwise could be expected to survive fire
(Metz et al., 2013; Cobb et al., 2016). We caution against applying our
results to unstudied outbreak-fire systems without evidence to support
an expected direction ormagnitude of impact. At the same time, our re-
sults strongly suggest these interactions areworth evaluating in a great-
er range of forest types.
6. Conclusions

There is increasing evidence that wildfire, and pathogen or insect
outbreak can occur simultaneously in forest ecosystems and that the
resulting tree mortality can have complex and sometimes positive ef-
fects on burn severity. During the 2008 Basin Fire, landscape configura-
tion and topography were important influences on burn severity.
Baseline maps of burn severity and disease-caused mortality derived
from Landsat and high-resolution KOMPSAT-2 satellite used a new ob-
ject-based filter, which reduced overestimation of diseased forests. Sud-
den oak death altered surface fuel loads and landscape heterogeneity.
Although these changes could have opposite effects on burn severity,
our findings indicated that the increased fuel loads increased burn se-
verity in adjacent forests. While derived from a single fire and disease
outbreak, our results imply that landscape-level disease conditions
could influence fire impacts at similar spatial scales for other forest
types and disturbances and that landscape-level investigations may be
needed to detect disturbance interactions in some ecosystems. Fire is
a critically important landscape structuring force in many forests
suggesting greater attention to understanding fire interactions with
other landscape-level disturbances such as insect or disease out-
break can improve prediction of impacts as well as management
responses. Understanding disturbance interactions allows us to bet-
ter maintain a “safe operating space” for ecosystem recovery
(Johnstone et al., 2016).
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