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A B S T R A C T

Tracking Earth’s past helps us to move from hindsight to foresight in seeking landscape sustainability, a pursuit
aided by modern mapping capabilities but hindered by a dearth of historical landscape information. To fill the
data gap and exemplify the use of old maps for land-use change sciences, we combined an old paper-based US
civil war map and modern aerial photos to derive land-use history and landscape dynamics at fine scales for a
region near Chancellorsville, USA, from 1867 to 2014. We also tested how advanced algorithms—object-based
image analysis and Random Forests (RF)—could aid in data processing. Automatic classification of the scanned
1867 paper map proved difficult, but its manual digitization could benefit from object-based image segmenta-
tion. Classifying digital aerial images was more accurate via the object-based than pixel-based method, but only
if the images were segmented appropriately. In the object-based classification, spectral-based features were
much more important and useful than shape/geometry features for land-cover discrimination, as ranked by RF.
During the 147 years, 32% of the region changed in land type. Settlement and roads increased in extent by
1850% and 691%, respectively, and woodland decreased by 19%. These changes fragmented the landscape,
altered the hydrological regime, and affected river morphology. The utility of old maps exemplified here pro-
vides an impetus for leveraging extant old maps or historical records to support land-use and global change
research. Our study also connotes the importance of preserving and geotagging current non-traditional data,
such as photos, videos, and citizen science data, that can serve as a baseline to document future landscape
change.

1. Introduction

The pace of contemporary global environmental change is un-
precedented, driven largely by humans. Of the myriads of ways we
affect Earth, land alteration stands out (Foley et al., 2005). Land-use
activities often clear natural vegetation, disturb carbon pools, impair
biodiversity, modify hydrology, and impact climate, among others
(Bright et al., 2017; Lambin and Geist, 2008; Mahowald et al., 2017).
Understanding the patterns, drivers, and impacts of landscape change,
therefore, is essential to seeking solutions for landscape sustainability

(Wu, 2013). Central to these pursuits are observations and technologies
capable of accurately tracking where, when, and how lands have
changed (Olah, 2009; Zhao et al., 2018).

Nowadays, monitoring land status is dominated by the use of spatial
imaging technologies (Joshi et al., 2016). The wealth of remotely-
sensed imagery captures vagaries of Earth’s dynamic landscapes across
spatial scales, be it a treefall, a new plantation, a wildfire, a removed
dam, or an expanding city (Arnett et al., 2015; Chen et al., 2015; Gitas
et al., 2014; Shalaby and Tateishi, 2007; Xiao et al., 2006; Zhou et al.,
2015). Their use is helping glean insights into land-use change
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processes, such as the underlying socioeconomic drivers and associated
climatic impacts, and inform sound decisions (Mahowald et al., 2017;
Newbold et al., 2015; Zhao and Jackson, 2014). Such mapping cap-
abilities continue to advance, enabling us to routinely observe areas as
large as the globe and as fine as a tree or even finer (Congalton et al.,
2014; Pu and Landry, 2012; Zhao et al., 2015). The recent opening of
Landsat archives, for example, allows mapping forest loss and gain for
each 30-m land pixel of the globe (Hansen et al., 2013); even more,
such information can be put at our fingertips instantly through webGIS
portals or digital earth platforms (e.g., Google Earth).

Accompanying the rapid growth of geospatial data is steady im-
provement in data analytics. For example, the set of algorithms for
classifying land-cover and vegetation type has been expanding, in-
cluding many machine learning tools such as Random Forests, Gaussian
Processes, and Support Vector Machine (Belgiu and Drăguţ, 2016; Li
et al., 2016; Zhao et al., 2011). The past two decades also saw a rise in
the use of high-resolution imagery that can resolve individual spatial
entities, fostering a new analysis paradigm known as object-based
image analysis (OBIA) (Chen et al., 2012; Walter, 2004). Its essence is
to group neighboring pixels into objects, a process aided by the de-
velopment and availability of image segmentation algorithms. OBIA is
not just conceptually appealing but practically powerful. Experimental
evidence is accumulating to exemplify its advantages over pixel-based
image classification, especially when analyzing high-resolution images
with limited spectral information (e.g., three or four bands) and for
heterogeneous landscapes (Blaschke, 2010). The recent surge in OBIA is
attributed largely to the growing availability of software. The majority
of published studies, for example, rely on eCognition, a mainstream
commercial OBIA software system (Blaschke, 2010). Meanwhile, the
use of OBIA still faces some practical challenges, as highlighted in a
recent review by Hussain et al. (2013). Examples of questions to be
further explored include how to find the optimal segmentation para-
meter for a given scene, how to address change detection at object le-
vels when confronted with some inevitable sources of error, and how to
leverage machine learning techniques to further improve OBIA.

Despite the well-established capabilities for mapping current land
status, there is a scarcity of historical land-use/land cover data (Prestele
et al., 2017). Modern remote sensing began long after World War II
(Jensen, 2009). Maps of landscape composition prior to that are rare or
nonexistent for large parts of the world, but historical landscape data
have critical roles to play. They document past human impacts and
provide clues on tackling current environmental issues, such as urban
planning, food security, land policy, and climate mitigation (Lambin
and Geist, 2008): A lack of data of the past makes it hard to build
predictive understandings for the future. We can’t observe Earth ret-
rospectively, so all extant data can be valuable for inferring the past
landscape. Goldewijk (2001) translated historical population density
into global cropland distributions for the past 300 years. In the US,
paper records of witness trees helped to reconstruct pre-settlement
vegetation pattern (Srinath and Millington, 2016). Relicts such as
stonewalls under forests aid in delimiting long-abandoned agriculture
fields (Johnson and Ouimet, 2016). Other examples include the use of
deeds and sale records, tax valuation, travelogue, ancient script, diary,
letter, folklore, drawings, and old maps (Killeen et al., 2008; Orwig and
Abrams, 1994; Ostafin et al., 2017).

Of all extant historical sources describing landscapes, old maps are
of particular importance. Historical drawings or paper maps, such as
topographic, cadastral, and military maps, are the only data sources
that capture the past landscapes of a region in a true spatially-explicit
manner. These maps sometimes are dated back several centuries and
are valuable for studying long-term land-use history and vegetation
dynamics. Their utility is growingly recognized; community interest in
mining old maps is rising (Bičík et al., 2015). As examples, Cousins
(2001) combined non-geometric historical maps with aerial photos to
analyze land use/land cover change in south-east Sweden. Haase et al.
(2007) analyzed multiple old topographic maps for Saxony, Germany to

track landscape changes and tackle contemporary environmental issues.
Fuchs (2015) incorporated historic statistics and old topographic maps
into reconstructions of land cover/land use for Central Europe back to
1900.

Use of old maps to fill data gaps not just brings prospects to land
change research but also presents some practical challenges. Foremost,
old maps are diverse in nature and are incompatible with modern di-
gital maps in terms of map projection, survey methods, spatial details
and scales, and thematic representation (Foster, 1992; Loran et al.,
2017; Petit and Lambin, 2002a; Schaffer and Levin, 2016). Most early
maps are non-geometric (Cousins, 2001). Map distortion is difficult to
quantify and rectify, even with many ground control points. The geo-
metric correction may be invalid for local features, which is of no
concern for coarse-level analyses but problematic for fine-scale ana-
lyses. Further, unlike remote sensing imagery that records true physical
signals, old maps are secondary—sometimes, subjective—representa-
tions of spatial objects. Their interpretation needs expertise, caution,
and even educated guesses. This is particularly true if metadata are
lacking or information desired is rendered only implicitly in the old
maps. Currently, old maps are predominantly analyzed manually
(Pavelková et al., 2016). Uncertainties exist regarding how modern
image analysis techniques can facilitate the information extraction from
old maps. Overall, large gaps still remain in research on the integrated
use of old paper maps and modern digital imagery for landscape change
analysis, urging for more cases studies, especially those focusing on
fine-scale landscape characterization.

This study aims to exemplify the use and value of historical map in
characterizing land-use history and landscape dynamics. We conducted
a case study for a region near Chancellorsville, Virginia, USA, through
the combined use of an 1867 civil war map and modern aerial images.
Our purpose is three-folded. First, we attempted to determine the extent
to which the modern image analysis technique—object-based analy-
sis—can improve the processing of historical map. We also examined
the use of machine learning—Random Forests—in aiding in object-
based classification of digital aerial images. Second, we provided fine-
scale characterization and maps of land-use history from 1867 to 2014
for the region, a product not previously available for this historically
important landscape. Third, we sought to demonstrate the implications
of the new land change maps by explaining the patterns or drivers of
the landscape dynamics and quantifying the associated consequences in
terms of changes in landscape metrics as well as in river morphology.

2. Materials and methods

2.1. Study area

Our study area is a 110 km2 region near Chancellorsville, Virginia, a
place known for the Battle of Chancellorsville in 1863 (Fig. 1). Large
part of it falls within Spotsylvania County, which was established in
1721. The region straddles the Piedmont Plateau and Coastal Plain
physiographic provinces, with characteristic soils being strongly acidic
and low in fertility. Vegetation prior to 1721 (i.e., pre-European set-
tlement) was mixtures of deciduous forests and was believed to be
disturbed by Indians to some degree through frequent burning of
woodlands (Mansfield, 1977). This fire regime had favored fire-re-
sistant oaks, leading to a climax landscape of oak-hickory forests.
European settlement transformed the landscape dramatically (Orwig
and Abrams, 1994). Large fractions of the forests were cleared for
firewood to support iron production or for agriculture lands to produce
tobacco and cotton. Poor cultivation practices soon led to severe soil
erosion and eventually to agriculture abandonment. Much of the
cleared lands then became recovered to forests. The modern landscape
of the region has also seen rapid changes during the past few decades,
attributed in part to the rise in population.
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2.2. Old map and aerial imagery

To characterize long-term spatially-explicit land use changes over
our study area at fine resolutions, we complied a paper-based historical
map and multiple aerial photos from several sources (Table 1), span-
ning from 1867 to 2014. Specifically, the old paper map used is a civil
war map made in 1867 by Cartographer Nathaniel Michler under the
authority of the U.S. War Department. It is among the most accurate
battlefield maps of that time, depicting details about houses, fences,
names of residents, roads, vegetation, drainage, rivers, and fords in
Northern Spotsylvania (Fig. 1). On the map, relief was marked by ha-
chures—some strokes drawn in the direction of the steepest slope to
represent terrain. We obtained a scanned version of it from David
Rumsey’s Historical Map Collection. The paper version has a scale of
1:21,120 and the digital photocopy has 300 pixels per inch, giving an
apparent pixel size of 1.77m. The photocopy has three bands (i.e., RGB)
with a yellow background and rivers colored in green, but inherently,
the map is a single-band image because its key map features were
drawn in monocolor.

The aerial photos were obtained from USGS’ and USDA’s geospatial
gateways for four points in time across 35 years: 1981, 1994, 2003, and
2014 (Fig. 1). All the photos are three- or four-band natural color/color-
infrared images, roughly with a 1-m spatial resolution. The images were
collected in different national aerial photography campaigns (Table 1).
The 1981 imagery is film-based and photoscanned: It is not georefer-
enced. In contrast, the images for the three later years were collected

with digital cameras and have been accurately georeferenced. Satellite
multispectral images captured between 1981 and 2014 are available
from many sources or platforms, such as Landsat (as early as 1972),
SPOT, and Quickbird. Pre-1981 photographic images also exist from
several sources, such as the US declassified CORONA imagery (avail-
able as early as 1962), the USGS aerial single frame atlas, and the aerial
photography collection from the US national archives and records ad-
ministration. These additional data can improve the temporal resolu-
tion of our analysis to a certain degree, but we made no attempt to
compile the extra potential data, due to various constraints that in-
clude, but are not limited to, coarser image resolutions, data costs, re-
strictive access, partial coverage, and unconventional processing. In-
terpreted differently, our primary goal here is to obtain at least one
modern aerial photo to contrast with the 1867 map rather than search
for all available data to generate a continuous record of land cover with
a minimal time gap.

2.3. Data analysis and image classification

Not all the data compiled above are georeferenced. Our data pro-
cessing therefore started with georectifying the 1867 old map and the
1981 aerial image. In the georeferencing, the 2014 aerial photo was
chosen as the baseline and we manually selected ground control points.
Georefencing the 1981 aerial photo was straightforward, but the 1867
old map needed extra care and sometimes trial-and-error, due to both
its different nature and the dramatic landscape change over the

Fig. 1. Study area (left) and data used: A paper-based 1867 US civil war map and four modern aerial photos (right).

Table 1
Description of data sources and characteristics.

Data Year of acquisition Color Resolution (M) Source

Paper-based Civil war Map 1867 Monocolor 1:21,120 D. Rumsey’s Map Collection

National High Altitude Photography (NHAP) 1981 color-infrared 1:58,000 USGS
Digital Orthophoto Quadrangle (DOQs) 1994 color-infrared 1 USGS
National Agriculture Imagery Program (NAIP) 2003 natural color 1 USDA
National Agriculture Imagery Program (NAIP) 2014 natural color 1 USDA
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150 years. Once all the images were geo-registered, we analyzed and
classified the images into discrete land classes for all the data years. Our
classification scheme consists of eight broad categories as tabulated in
Table 2. This scheme was intended primarily for local use and was
chosen especially for reconciling the contrasting natures of the 1867
and modern landscapes. Other detailed standard class schemes, such as
NLCD, the National Gap Analysis, CLD, MODIS, and IGBP, are possible
but not considered. Use of these detailed schemes will introduce un-
necessary complications yet help less with our analysis. In this regard,
our classification maps are not aimed to be directly comparable to the
US NLCD data in terms of either spatial details or class categories.

To classify the old map or aerial images, we applied and tested three
methods. First, we manually classified and digitized all the map and
images via visual interpretation. This process was very laborious and in
many cases, involved a tedious, frequent cross-checking in reference to
high-quality images or geotagged photos available in Google Earth. This
manual method provided the most accurate results. Therefore, we used
these outputs as ground-truthing—with a nominal accuracy of
100%—for applying and testing the two automatic methods, as ex-
plained next. Second, one automatic method we chose is the pixel-based
maximum likelihood classifier (MLC). Although new machine learning
classifiers such as Random Forests (RF), Gaussian Processes, and SVM
tend to be more powerful than MLC, they were not considered due to
the enormous computation involved for classifying high-resolution
images at pixel levels (Zhao et al., 2008).

As a third method, we applied an object-based classification ap-
proach through the combined use of the eCognition software and RF

(Hultquist et al., 2014; Zhou et al., 2014). The images were first seg-
mented into patches or objects. For each object, a total of 33 spectral or
shape features were generated and used as inputs to RF, a machine
learning algorithm that proved effective in many previous case studies
(Hultquist et al., 2014). The grouping of pixels into objects can greatly
reduce the computational costs for RF. A particularly attractive feature
of RF is its capability of ranking the relative importance of inputs
variables (Breiman, 2001), thereby allowing us to quantify the relative
usefulness of shape and spectral features in the object-based classifi-
cation for land-ocver discrimination.

Classification accuracies of the two automatic methods were as-
sessed with regards to the manually-delineated classification maps for
all the data years. In the comparison, we clumped the River, stream,
and water bodies into a single water class, due to the significant spectral
confusions among the three. Also, all the comparisons were made at a
pixel-to-pixel basis, although the object-based method perform classi-
fication at the object level. A particular index we chose to quantify
accuracy is the Kappa statistics:
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where N is the number of pixels, k is the number of rows in the matrix,
xij is the number of observations in row i and column j, xi+ and x+j are
the marginal totals of row i and column j, respectively. More technical
information about this statistic can be found in Congalton (1991).

2.4. Land-use history and changes in landscape metrics

We examined the new, long-term, high-resolution land maps de-
rived above to characterize land-use change history for this region.
Because our purpose here is to test the utility of our maps, the analysis
in this part did not consider the two versions of maps from the auto-
matic methods. Rather, we relied on the manually-derived land-cover
maps, that is, the most accurate land-cover maps we obtained
(Supplementary data in Appendix A). Foremost, we derived the overall
change of the dominant land classes over time and quantified class-
specific change using transition statistics. Also, landscape patterns are
known to exert strong control on various landscape processes (Dalloz
et al., 2017; Lausch et al., 2015; Yuan et al., 2015), be it ecological,

Table 2
Classification schemes for land-use change analysis.

Classification Description

Woodland Land dominated by trees or shrubs
Grassland Grassland\Farmland
Residential Land dominated with houses
Transport Roads
River Rappahannock and Rapidan river
Stream Steams
Water Water bodies, lakes
Impervious Commercial and institutional area\mixed urban

Table 3
Landscape metrics (McGarigal et al., 2002).

Class
Metric

Description Measurement

CA Total (Class) Area equals the sum of the areas (m2) of all patches of the
corresponding patch type, divided by 10,000 (to convert to hectares); that is,
total class area.
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NP Number of Patches equals the number of patches of the corresponding patch
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LPI Largest Patch Index equals the percentage of the landscape comprised by the
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aij = area (m2) of patch ij.
A= total landscape area (m2).

AREA-MN Patch Area equals the area (m2) of the patch, divided by 10,000 (to convert to
hectares).

= ∑ = ( )AREA aj
n
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1

10, 000

aij = area (m2) of patch ij
FRAC-MN Fractal Dimension Index equals 2 times the logarithm of patch perimeter (m)

divided by the logarithm of patch area (m2); the perimeter is adjusted to
correct for the raster bias in perimeter.

=FRAC
Pij

aij

2ln . 25
ln

pij = perimeter (m) of patch ij.
aij = area (m2) of patch ij.

ENN-MN Euclidean Nearest Neighbor Distance equals the distance (m) to the nearest
neighboring patch of the same type, based on shortest edge-to-edge distance.
Note that the edge-to-edge distances are from cell center to cell center.

=ENN hij

hij = distance (m) from patch ij to nearest neighboring patch of the same type
(class), based on patch edge-to-edge distance, computed from cell center to cell
center.

MN MN (Mean) equals the sum, across all patches in the landscape, of the
corresponding patch metric values, divided by the total number of patches.
MN is given in the same units as the corresponding patch metric.

=
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N
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biophysical or biogeochemical. The standard way to quantify landscape
patterns is to resort to landscape metrics, leveraging a suite of spatial
statistics of patch configurations across the landscape. Landscape me-
trics in common use can be derived at the patch, class, or landscape
level (McGarigal et al., 2002). The particular metrics we used and their
acronyms are described in Table 3, including six class-based spatial
metrics and a landscape-level metric. These metrics have been proven
as useful predictors of many underlying ecological processes or good
indicators of landscape quality.

3. Results and discussion

3.1. Land cover classification: the old map

The 1867 old map was geo-rectified in reference to the 2014 image
reasonably well. The estimated registration error was 28.5 m based on a
six-fold cross-validation of 31 pairs of ground control points. Our use of
cross-validation rather than independent points is due to the difficulty
in reliably pinpointing a large number of ground features common in
both the 1867 and 2014 maps, a practical challenge also reported
previously (Balletti, 2006; Cousins, 2001). The 31 pairs we chose in-
clude homesteads, historical markers, churches, road features, river
features, farmhouses, fords, and other features believed to remain re-
latively stable. Even for these features, uncertainties could exist re-
garding their exact positions on the old map. Some features on the 1867
map were just symbolic representation rather than true physical
boundaries; other features, such as the cross of a stream with a known
road, would have been changed slightly (Fig. 2). Given the inaccuracies
in pinpointing features, the error of 28.5m may be an exaggeration of
the true geometric error of the old map.

Despite the relatively large georegistration error compared to the
resolutions of the aerial photos, the accuracy we obtained should be
sufficient for land-cover analysis over a large landscape like ours (Chen
et al., 2014; Lambin and Geist, 2008). Moreover, we found that most
advanced automatic georeferencing functionalities were not helpful for
registering this old map. In particular, with only a single band mono-
color image, the map contains little to no spectral information for auto-

registration, a feature that is often leveraged to automatically match
multiple digital multispectral images (Bentoutou et al., 2005; Shi and
Jiang, 2016). Overall, the difficulties and issues encountered here are a
generic problem faced in the processing of local historical maps. The
solution lies more in local knowledge and familiarity with the area
rather than computer techniques. To augment the utility of historical
maps and reduce their locational errors, user-friendly tools may be
developed to gather inputs from local citizens or experts. A successful
example is David Rumsey’s Historical Map Collection website; it pro-
vides an easy-to-use web GUI for any nonexpert viewers or users to
contribute to the georeferencing and interpretation of historical maps
or records (Goodchild, 2007; Rumsey and Williams, 2002).

Automatic classification of the historical map was found infeasible,
regardless of the use of MLC at the pixel level or Random Forests (RF) at
the object level. The difficulty arises from both the lack of spectral in-
formation and the idiosyncratic nature of the old map: Although the
many land features are easily identifiable when interpreted visually,
their symbolic representations are abstract and not amenable to image
analysis algorithms. This is especially true due to the frequent lumping
of multiple different types of features into a single layer (e.g., annota-
tions over a farmhouse). The direct application of MLC to the raw pixels
gave an overall classification accuracy of only 13.8%. This accuracy
may be improved slightly if incorporating additional derived texture
layers such as mean and skewness, giving an accuracy of 23.4%.
Similarly, RF for object-based classification didn’t yield any satisfactory
classification. However, in the object-based analysis, the segmentation
of the map resulted in some objects or patches that often characterize
the boundaries of land parcels reasonably well (Fig. 3). Although this
segmentation was fraught with numerous errors (e.g., those due to map
annotation and symbols), the vector-based geometries of the resulting
objects provided a useful starting point for manual editing and refine-
ment. Overall, we found that automatic segmentation was the most
useful computer-based analysis that aided in the processing of the
historical map.

Fig. 2. Examples of the ground control points chosen to geo-rectify the 1867 old map: (a) Ruins of Chancerlorville House and (b) a road-stream crossing.
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3.2. Land cover classification: aerial photos

In contrast to the processing of the historical map, the analysis and
classification of the aerial photos benefited considerably from digital
image analysis, especially from the objected-based analysis. First of all,
the 1981 aerial photo was accurately georegistered to the 2014 baseline
image (RMSE=2.52m). More importantly, in classifying the aerial
photo, the objected-based classifier based on RF outperformed the
pixel-based MLC method. For ease of illustration, we use the 2014
image as an example: Fig. 4 depicts the comparisons of the three
methods—visual interpretation, pixel-based MLC classification, and
object-based RF classification. As explained earlier, the visual inter-
pretation results were deemed as ground-truthing and used as reference
data to assess the other two classifiers. The pixel-based classification
with MLC shows a typical salt-and-pepper pattern, a well-known phe-
nomenon that can often be suppressed through some additional spatial
filters (Van de Voorde et al., 2007). This scattered pattern is particu-
larly evident around residential areas. The overall pattern of the MLC-
based classification therefore appears to deviate from the reference
image derived from visual interpretation.

In contrast to the pixel-based classification, the object-based method
resulted in a land-cover pattern that resembled the reference pattern
more closely (Fig. 4), as a result of reduced spatial heterogeneity at the
object levels (Im and Jensen, 2005). However, the object-based classi-
fication was found to depend strongly on the scale at which the

segmentation was performed—an effect that has been widely ac-
knowledged and examined previously (Blaschke et al., 2004; Liu and
Xia, 2010). We tested four different values for the scale parameters and
found that the best classification accuracy of the four was 77.2% (Kappa
statistics: 74.6%), obtained when the image was mostly over-segmented
(i.e., small objects). This accuracy is better than the value of 75.4%
(Kappa: 72.8%) obtained from the MLC pixel-based classifier. But when
the image was under-segmented, the accuracy is only 68%, worse than
the pixel-based classifier. Generally speaking, for a given image, there
exists an optimal segmentation scale that has the least classification
error (Liu and Xia, 2010). But no automatic procedures are available to
pre-determine this optimum; instead, it needs to be pinpointed by trial-
and-error, an exercise not pursued in this study.

Another important finding from our object-based classification
concerns the relative usefulness of shape and geometry versus spectral
features in classification (Fig. 5). The ranking of variable importance
was made possible by a random permutation scheme in Random For-
ests. In our object-based classification, we incorporated a total of 33
object-level features (i.e., input variables for RF) and found that the top
seven important features identified by RF were all spectral features,
such as mean spectral values and standard deviation of spectral values
(Fig. 5, top). The eighth most important variable is a geometry fea-
ture—the shape index (i.e., the border length of an image object divided
by four times the square root of its area). Overall, our experiment
suggests that the addition of object geometric features only improved

Fig. 3. Segmentation of the 1867 old map into objects at two contrasting spatial scales. Examples shown here demonstrate the potential utility of object-based image
segmentation in aiding the analysis of historical maps.

Fig. 4. Comparison of three classification methods based on the 2014 aerial photo—Visual interpretation (ground-truthing), Pixel-based Maximum Likelihood
classification (MCL), and Object-based Random Forests.
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the classification marginally. This finding is consistent with the above
comparison result: The use of pixel-based spectral information alone
gave an accuracy of 75.5%, as compared to 77.2% that resulted from
the combined use of spectral and geometry/shape features accuracy.

Two caveats are noted about our object-based analyses. First, the
exact ranking of variable/feature importance also depends on the land
cover considered (Fig. 5). For example, the blue-band spectral value
was found more important for classification of woodland than that of
residential area. But still, the relative usefulness of geometric features
was low for all classes, except that when classifying residential area, the
object-level feature (i.e., a geometric feature) was the fifth most useful
predictor. Second, the limited usefulness of shape/geometry features
we found appeared to contradict the seeming belief we put in their
value. To date, experimental evidence from other case studies that
rigorously quantified the relative merits of spectral and shape features
is still very limited. Regardless, decades of lessons learned on land cover
classification indicate that the answers to questions about which
method or variable is more useful tend to be case-specific and should be
always interpreted in a relative sense (Foody, 2002).

3.3. Land use and land cover change

The five land-cover maps derived from visual interpretation cap-
tured the dramatic landscape changes from 1867 to 2014 (Fig. 6). (GIS
shapefiles of the five digitized maps are available from Appendix A)
During this 147-year period, 32.1% of the region changed in land cover.
Settlement areas increased by 1, 850%. Woodland, grassland/cropland,
and streams decreased in extent by 19%, 7%, and 18%, respectively.
About 10.3% of the original woodland and 2.1% of the original grass-
land have been converted into residential areas. Despite the moderate
loss of forest cover compared to other areas in the US, the landscape of
the area, however, became more fragmented, especially due to expan-
sion of transport networks: The extent of roads increased by 691%.
These changes were largely driven by population growth and human
activities. In roughly the same period, the population rose from 1, 356
to 129, 202 (Bureau, 2017), a 94 fold increase. Additional results about
individual land-cover percentage and change statistics are summarized
in Table 4. Spatial details about land change between 1869 and 2014
are presented in Fig. 7.

This region saw rapid urban development in recent decades, un-
dergoing a gradual conversion from rural to suburban landscape
(Table 4). The conversion and the influx of residents began during the

early 1960s, as a result of the construction of an interstate highway. But
this early development falls within the years of data gap and was im-
plicitly captured by the land change from 1860 to 1981, with a 1009%
increase in settlement area. Accompanying the growing population is
an increase water surface areas. In the 1867 map, no open water bodies
(i.e., lakes and ponds) was present at all. In 2014, the coverage of open
water bodies rose to approximately 2.71 km2, attributed to the growing
needs for clean water supply and the constructions of two reservoirs:
Motts Run Reservoir built in 1991 and Hunting Run Reservoir. The
extents and locations of both reservoirs were depicted in our maps
(Figs. 6 & 7). In particular, Hunting Run Reservoir was impounded in
2002 and reached full pool in early 2009, a dynamic process revealed
by the difference between the 2003 and 2014 land cover map (Fig. 6).
Evident in the maps is also the addition and expansion of residential
areas around Hunting Run Reservoir, especially at the southeastern
flank.

We further demonstrated the utility of our maps by examining long-
term changes in riverscape. The migrating channel of the
Rappahannock River is evident. An overlaying of river boundaries be-
tween 1867 and 2014 highlights areas of the river that were subject to
erosion and deposition (Fig. 8). This course migration is particularly
conspicuous over and near the meandering parts of the river. Inter-
pretation of the observed channel shift can be complicated due to
various sources of uncertainties, such as georectification error and
discrepancy in map dates pertaining to seasonality (Debnath et al.,
2017; Glavan et al., 2013). But some of the observed changes in river
morphology are unlikely to be caused by such uncertainties and should
represent robust patterns, as supported by other lines of observational
or theoretical evidence. For example, the channel width became nar-
rower throughout the entire length, a pattern also evidenced in a visual
comparison of real photos taken at Germanna Ford in 1864 and recently
(Fig. 8). The wider channel in 1867 and the associated larger stream-
flow could be attributed largely to land-use practices of that time. Ex-
cessive runoff and erosion had been a well-documented issue after
European settlement, depleting topsoil and deteriorating soil fertility.
The woodland coverage in 1867 was larger than the current value, but
the forests were a recovery from agricultural abandonment and due to
poor soil fertility, they were mostly still low in stature. Therefore,
surface runoff in 1867 is estimated to be larger, compared to the pre-
sent. Overall, the changes in land-use altered the hydrological regime,
thereby contributing to the observed patterns of erosion and deposition
in the river and shifting the channel to a new equilibrium (Debnath

Fig. 5. In our object-based classification, shape/geometry features (black bars) were less useful or important than spectral-based features (red bars) for land-cover
discrimination, as assessed and ranked by Random Forests. The top row is for the overall classification of all land-cover classes, and the bottom three rows for class-
specific classification. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

D. Liu et al. Ecological Indicators 95 (2018) 595–605

601



et al., 2017; Tagwireyi et al., 2017).

3.4. Landscape pattern analysis

Landscape metrics reveal systematic changes in spatial patterns of
the landscape that cannot be characterized by overall changes in land-
cover percentage alone. As examples, residential areas exhibited the
largest growth rate in both class area (CA) and number of patches (NP).
The significant increase in NP for residential area is consistent with the
rapid population growth. In contrast, NP for the transport class de-
creased by −91.8%, although the transport class showed a high growth
in total area. This pattern is due to the fact that the transport network
becomes more connected with many linked neighboring patches. The
largest patch index (LPI) and mean patch area (AREA_MN) of the
transport class also increased, with a decreased mean fractal dimension
index (FRAC_MN). FRAC_MN represents shape complexity: Larger va-
lues indicate more convoluted shapes (McGarigal et al., 2002). The re-
arrangement of patches within the landscape is partially quantified by
the mean Euclidean nearest neighbor distance (ENN_MN), that is, the

distance to the nearest neighboring patch of the same type based on
shortest edge-to-edge distance. The ENN_MN values for patches of
grassland, transport, and impervious surfaces decreased by 89.9%,
86.0%, and 96.1%, respectively, from the year 1867 to 2014. Other
systematic shifts in landscape pattern are summarized in terms of var-
ious landscape metrics in Table 5. The values of these metrics as pre-
dictors of ecological or biophysical processes have been widely con-
firmed, but their such use requires building explanatory or predictive
models, an exercise that will require detailed observations of the pro-
cesses of interest.

As a caveat, when integrating historical and modern data, there
generally exists a large temporal gap—more than 100 years in our case.
Given the fortuitous nature of old maps, such gaps are almost inevitable
(Axelsson and Östlund, 2001): The earlier an old map dates back, the
larger the temporal gap may be. Whether or not a data gap will be
problematic is case-specific. For our analyses, it is not because our
purpose was to merely contrast the 1867 map with the modern images,
but it becomes problematic for those applications on mapping land-
scapes continuously over time (Petit and Lambin, 2002b). Finding more

Fig. 6. Changes in land use/land cover from 1867 to 2014 captured at the five points in time. Results here are derived from visual interpretation (i.e., our first land
classification method).

Table 4
Class areas and change statistics.

Land cover types 1869 1981 1994 2003 2014 Overall Δ%

km2 km2 Δ % Km2 Δ % Km2 Δ % Km2 Δ %

Woodland 89.019 76.428 −14.381 77.291 1.167 74.683 −3.375 72.930 −3.468 −19.097
Grassland 12.385 13.412 8.365 13.393 −0.306 11.491 −13.985 11.588 0.183 −6.826
Residential 0.656 7.284 1009.299 7.242 −0.659 10.528 45.402 12.803 21.695 1848.706
Transport 0.697 4.935 588.092 4.513 −9.037 4.439 −1.618 5.518 24.870 690.544
River 1.880 2.278 −16.755 2.213 0.000 2.071 −1.989 1.902 −8.160 −17.831
Stream 0.661 0.972 47.0500 0.792 −21.502 0.374 −63.889 0.273 −20.589 −58.886
Water 0.000 1.389 N/A 1.387 −0.288 1.888 36.193 2.706 43.326 N/A
Impervious 1.793 1.453 −18.907 1.310 −9.911 2.644 100.305 1.254 −52.610 −35.194
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historical maps or images is not a solution because the problem is data
scarcity itself. One viable, indirect solution is to estimate spatial land-
scape patterns for those data-gap years by using models or simulators,
such as cellular automata, agent-based modeling, and statistical scaling
(Groeneveld et al., 2017; Irwin and Geoghegan, 2001; Liu et al., 2017).
Land-use simulators take existing maps as initial conditions and apply
heuristic rules to model the change processes. Often enough, this gap-
filling can be aided and constrained by incorporating other non-spatial
historical data, such as deeds, sale records, and tax valuation
(Goldewijk, 2001). Overall, a lesson learned is that we should strive to
document and preserve our current data because they will become old
data for future generations to explore—a voice also echoed in many
other science communities (Griffin, 2017)

4. Conclusions

A lack of reliable, spatial-explicit historical land-use/land cover data
remains a barrier to land change and global environmental change
sciences. We demonstrated that this gap could be partially filled by
resorting to historical maps. The integration of the civil war map and
modern aerial photos helped to derive long-term land-use history and
landscape change at high spatial resolutions from 1867 to 2014. The
derived detailed pattern in land use change documented a conversion
from rural to suburban landscape, offering valuable information to
quantify ecological impacts and infer anthropogenic drivers of land
changes. The value of our maps was also exemplified for tracking
changes in river morphology. Our investigation is limited in spatial
extent. But historical data similar to ours for other regions become in-
creasingly available and accessible, for example, due to expiration of
copyrights, improved data sharing technologies, and rising public

Fig. 7. Land cover transition from 1867 to 2014, as derived based on visual interpretation.

Fig. 8. Changes in Rappahannock River from 1867 to 2014. Photos taken at Germanna Ford in 1864 (left) and in 2010s (right) illustrate that streamflow was reduced,
the river width was narrowed, and the riparian vegetation and riverine landscape were altered.
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interest. These old data are still under-utilized. We hope that the em-
pirical evidence reported here provides an impetus for further research
on leveraging the value and power of such historical data or maps to
advance land-use sciences.

Methodologically speaking, the use of historical maps can involve
tedious manual processing. The information extraction process may be
expedited by computer image analysis, but the achieved level of auto-
mation will be case-specific. Automatic classification of our historical
map was difficult, if not impossible, regardless of the use of pixel-based
or object-based classifiers. However, object-based analysis proved
useful in meaningfully segmenting the old map and facilitating the map
digitization. When tested upon modern aerial imagery, object-based
classification performed better than the pixel-based method but re-
quired fine-tuning for image segmentation. Our variable importance
analysis via Random Forests suggests that most of the geometry/shape
features were useless or only marginally useful for object-level classi-
fication. The generality of these findings needs to be further tested in
more case studies, especially regarding the effective use of machine
learning to assist in object-based classification. Irrespective of which
techniques are used, a lesson learned is that the integration of historical
data and digital remote sensing imagery would be difficult or im-
possible without metadata or other ancillary information. Old maps, for
example, become less useful if not georeferenced reliably. Likewise, the
vast majority of data that we are collecting or generating now, such as
maps, paintings, digital photos, videos, and citizen science data, may
serve as baseline data for future generations. Our preserving and geo-
tagging such data will do our future counterparts a service in doc-
umenting future landscape changes.
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