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A B S T R A C T   

Large fractions of human-altered lands are working landscapes where people and nature interact to balance 
social, economic, and ecological needs. Achieving these sustainability goals requires tracking human footprints 
and landscape disturbance at fine scales over time—an effort facilitated by remote sensing but still under 
development. Here, we report a satellite time-series analysis approach to detecting fine-scale human disturbances 
in an Ohio watershed dominated by forests and pastures but with diverse small-scale industrial activities such as 
hydraulic fracturing (HF) and surface mining. We leveraged Google Earth Engine to stack decades of Landsat 
images and explored the effectiveness of a fuzzy change detection algorithm called the Bayesian Estimator of 
Abrupt change, Seasonality, and Trend (BEAST) to capture fine-scale disturbances. BEAST is an ensemble 
method, capable of estimating changepoints probabilistically and identifying sub-pixel disturbances. We found 
the algorithm can successfully capture the patterns and timings of small-scale disturbances, such as grazing, 
agriculture management, coal mining, HF, and right-of-ways for gas and power lines, many of which were not 
captured in the annual land cover maps from Cropland Data Layers—one of the most widely used classification- 
based land dynamics products in the US. For example, BEAST could detect the initial HF wellpad construction 
within 60 days of the registered drilling dates on 88.2% of the sites. The wellpad footprints were small, dis-
turbing only 0.24% of the watershed in area, which was dwarfed by other activities (e.g., right-of-ways of utility 
transmission lines). Together, these known activities have disturbed 9.7% of the watershed from the year 2000 to 
2017 with evergeen forests being the most affected land cover. This study provides empirical evidence on the 
effectiveness and reliability of BEAST for changepoint detection as well as its capability to detect disturbances 
from satellite images at sub-pixel levels and also documents the value of Google Earth Engine and satellite time- 
series imaging for monitoring human activities in complex working landscapes.   

1. Introduction 

Humans have been and will be altering Earth’s natural landscapes 
through myriads of activities (Chen et al., 2015; Tilman et al., 2019). In 
the US, for example, 44% of the land has been converted from native 
vegetation to croplands and currently, the largest driver for land use 
change is energy development (Trainor et al., 2016). A large proportion 
of human-modified lands across the globe are working landscapes–an 
umbrella term coined to balance social, economic, and ecological needs 
within a landscape and highlight the importance of understanding and 

observing the interactions between people and nature (Eastburn et al., 
2017). Critical to the efforts of this kind for sustainability goals is the 
establishment of capabilities for reliably tracking and monitoring 
human footprints and disturbances (Miller and Zégre, 2016; Ma et al., 
2018). Traditional field-based ways of surveying disturbances are 
expensive and spatially limited. In contrast, remote sensing provides 
alternative observations over large areas at lower costs and has 
increasingly become a popular method for detecting disturbances at 
various spatial and temporal scales. 

Our capabilities of remotely observing landscape disturbances, being 

* Corresponding author. 
E-mail address: zhao.1423@osu.edu (K. Zhao).  

Contents lists available at ScienceDirect 

ISPRS Journal of Photogrammetry and Remote Sensing 

journal homepage: www.elsevier.com/locate/isprsjprs 

https://doi.org/10.1016/j.isprsjprs.2021.04.008 
Received 26 August 2019; Received in revised form 7 April 2021; Accepted 15 April 2021   

mailto:zhao.1423@osu.edu
www.sciencedirect.com/science/journal/09242716
https://www.elsevier.com/locate/isprsjprs
https://doi.org/10.1016/j.isprsjprs.2021.04.008
https://doi.org/10.1016/j.isprsjprs.2021.04.008
https://doi.org/10.1016/j.isprsjprs.2021.04.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isprsjprs.2021.04.008&domain=pdf


ISPRS Journal of Photogrammetry and Remote Sensing 176 (2021) 250–261

251

naturally occurring or anthropogenically driven, have been constantly 
improving, especially made possible by recent advances in data ana-
lytics and computational capacity (Hu et al., 2017, 2019; Wulder et al., 
2016; Zhao et al., 2018). A milestone is the arrival of Google Earth 
Engine (GEE). GEE is a multi-petabyte catalog of satellite imagery 
collected during the past several decades, open to the general research 
communities (Gorelick et al., 2017). It enables fast and efficient pro-
cessing of multiple years of satellite images via a user-friendly online 
cloud computing platform. GEE has become an increasingly popular 
platform for a wide spectrum of remote sensing applications (Ghazaryan 
et al., 2018). In particular, because of the opening of global Landsat 
archive data and the immediate availability of the Landsat data as high- 
density time-series images on GEE, great progress has been made in 
developing remote sensing approaches to monitor landscape dynamics 
and human-induced disturbances over time. Examples include the 
mapping of wildfire, forest logging, glacier melting, insect infestation, 
flooding, mining, and industrial activities (Watts and Laffan, 2014; Yu 
et al., 2018; He et al., 2021). 

Concomitant with the advances and progresses in mapping distur-
bances are some practical challenges in characterizing human activities 
of diverse forms. This is especially true due to the vagaries of the ways 
and scales at which humans modify the landscapes. In the US, for 
example, the majority of human-dominated lands are working land-
scapes where the rural–urban continuum is frequently managed or 
altered to meet multiple competing needs. These activities occur often at 
small scales and overlap with each other over time. One example is the 
recent boom in unconventional shale gas extraction and hydraulic 
fracturing (HF). The vegetation disturbances caused by HF from the 
construction of wellpads and access roads are local in extent. An indi-
vidual HF wellpad at its full operation is normally 1to 2 ha (Ohio 
Department Natural Resources) and sometimes up to 4 ha for a super-
sized pad. These areas are often too small to be detected by a moderate- 
resolution sensor (e.g., MODIS). Even with high-resolution sensors such 
as Landsat, these areas can be represented by only 10 to 45 pixels at 30- 
m resolutions; the issue of mixing pixels is much severer than charac-
terizing large-scale disturbance such as logging and forest fire. The 
majority of existing remote sensing studies for mapping such activities 
took classification approaches based on paired pre- and post-disturbance 
images (Slonecker and Milheim, 2015). These traditional classification 
approaches are not optimal to tackle the small and time-varying nature 

of the disturbance; for example, training sample sizes can be highly 
skewed and the disturbances occurred not before a fixed point of time 
but spread across many years continuously. The importance and chal-
lenges in mapping these small-scale activities have been well recognized 
(Pickell et al., 2014; Powers et al., 2015; Wasson and Franklin, 2018) but 
remain under-explored, with satellite time-series analysis being the most 
promising solution. 

Numerous time-series algorithms have been developed in the passing 
decade to leverage the time dimension of satellite data—still being an 
active area of research. The advantages of time-series analysis are self- 
evident for mapping landscape dynamics and disturbances, but the 
availability of many alternative algorithms highlights a potential prob-
lem: no single algorithm is always applicable to all scenarios. The 
problem is recently stressed in a study evaluating seven common 
methods and finding that the agreement of the detected disturbances 
among the algorithms is close to nil at the pixel levels (Cohen et al., 
2017). A belief in alleviating this dilemma is to discard the single-best- 
algorithm paradigm and switch to ensemble modeling. One such 
ensemble algorithm is the Bayesian Estimator of Abrupt change, Sea-
sonality, and Trend (BEAST) originally reported in Zhao et al. (2019). 
The first evaluation of this algorithm is a case study monitoring wetland 
vegetation dynamics (Cai et al., 2020), and the practical performances of 
BEAST for detecting many other types of disturbances over different 
regions are yet to be done. 

This study aims to design and evaluate a satellite time-series 
approach to detecting human-induced disturbances at fine scales, 
especially those associated with energy development. We first gathered 
decades of LandSat time series data via Google Earth Engine and then 
applied the BEAST algorithm to decompose the stacked high-density 
Landsat time series into individual components: seasonality, trend, 
and changepoints. Finally, we assessed the results and the effectiveness 
of BEAST with different ancillary data. More specifically, we seek to 
answer three questions related to landscape disturbance: (1) Is BEAST 
able to capture land cover disturbance at fine scales? (2) What is the 
magnitude of the detected disturbances or vegetation loss caused by 
human activities in a typical working landscape in the middle US? (3) 
How large are the disturbances from hydrofracking activities relative to 
other disturbances and how do they alter the landscape together? 

Fig. 1. Study area and Landsat time-series images: (a) The Yellow Creek watershed is a forest-dominated landscape with frequent disturbances from industrial and 
energy development activities. (b) Examples of the disturbances include hydraulic fracturing (e.g., construction of wellpads and access road) and coal and minerals 
mining. (c) High-density Landsat time-series NDVI images, with a specific example of the NDVI trajectory for a given sample. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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2. Material and methods 

2.1. Study area 

Our study area is the Yellow Creek Watershed in Eastern Ohio, USA 
(Fig. 1a). Its size is 380 km2 and its land cover is dominated by forest 
(72.5%), followed by grassland or pasture (17.3%), urban (5.4%), and 
cropland (2.3%). We selected this area because it is typical of the Ap-
palachian region that has been disturbed by various human activities, 
such as coal and minerals mining, development of utility transmission 
lines, and unconventional shale oil and gas extraction (Fig. 1(a) and (b)). 
For example, from 2008 to 2017, 51 wellpads were constructed and 185 
horizontal wells were drilled. Detailed information about the locations 
of the wellpads and land cover characterization for this watershed is 
supplied in the Supplementary Materials. 

2.2. Satellite time-series data 

We processed 18 years’ worth of Landsat images using Google Earth 
Engine from 2000 to 2017. In our study watershed, there are a total of 
6575 scenes being pooled from GEE’s Tier-1 atmospherically corrected 
surface reflectance data acquired by Landsat 5, 7, and 8. All the data 
preparation and processing were performed in a batch mode on GEE’s 
cloud platform. In particular, we applied multiple filters to the time- 
series images using the quality control flag and the snow/cloud masks 
(e.g., ≥5 in quality control flag); the filtered images were then converted 
into NDVI. Because the time-series algorithm to be used (i.e., BEAST) 

was formulated to handle regularly-spaced time series data only, we 
further resampled the NDVI time series at evenly-spaced points of time 
using a time interval of 15 days—a period commensurate with Landsat’s 
revisit period (i.e., 16 days). The resampling resulted in 443 values per 
time series. Still, missing data were prevalent across the region and over 
time. The overall miss rate was 56.1%, but we kept the missing values 
without further special processing because the BEAST algorithm can 
handle missing data on its own. 

2.3. BEAST: A Bayesian ensemble change-detection algorithm 

BEAST is a Bayesian statistical algorithm to detect seasonality, trend, 
and abrupt changes in time series (Fig. 2). It differs from conventional 
changepoint detection algorithms mainly in two aspects. First, BEAST 
does not rely on any single model for decomposing the time series but 
rather combines numerous models into an average model using a tech-
nique termed Bayesian model averaging, that is, combining many weak 
models into a stronger model. Second, as a Bayesian algorithm, BEAST 
treats all the unknowns as random and therefore characterizes un-
certainties of all sorts explicitly. Unlike the existing changepoint algo-
rithms that report only whether there is a disturbance or not (i.e., a 
binary result), BEAST is a fuzzy detector that estimates the probability 
that a disturbance occurs for any given point in time (Fig. 2). 

Mathematically speaking, BEAST breaks a time series Y(t) into four 
components: trend (T), seasonal variability (S), abrupt changes (θt and 
θs), and noise (ε). These four components are combined additively to 
model the time series: 

Fig. 2. Illustration of how BEAST works: BEAST is an ensemble algorithm seeking to decompose a time series into trend, seasonality, and changepoints. The interest 
of this study is mainly in the changepoint component. Unlike conventional methods that search only for a so-called best model, BEAST includes all the models into the 
inferences and synthesizes them into an average model, allowing explicitly quantification of model uncertainties. 
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Y(t) = T(θt)+ S(θs)+ ε  

where ε is the Gaussian random error term N(0, δ2) with an unknown 
variance δ2 ; T and S are the basic terms for the trend and seasonality 
components where abrupt changes are implicitly encoded in the pa-
rameters θt and θs. More specifically, θt and θs represent the numbers 
and locations of changepoints in the trend and seasonal components. Let 
us denote {θt , θs, δ2} by M. The unknown parameters M = {θt , θs, δ2} are 
formulated as a posterior probability distribution according to Bayes’ 
theorem: 

f (M|Y)∝f (Y|M)*f (M)

The exact forms of the three terms are detailed in Zhao et al. (2019). 
The posterior probability f(M|Y) encodes all the information on the time 
series decomposition, including the numbers and locations of change-
points in the trend and seasonal components. But f(M|Y) is analytically 
intractable and it needs to be stimulated via the Markov Chain Monte 
Carlo (MCMC) sampling. In our analysis, we chose five parallel MCMC 
chains, each with 50,000 iterations with the first 5000 discarded as 
burn-in samples. 

2.4. Algorithm evaluation and ancillary data 

To test the effectiveness of BEAST, we primarily used two approaches 
for algorithm assessments: one focusing on the regression aspect of the 
algorithm, and another on the accuracies of changepoint detection. We 
first evaluated the performance of BEAST as a regression model in fitting 
the Landsat NDVI time series. Common diagnostic measures, such as R2 

and RMSE, were computed to evaluate the goodness-of-fit of the algo-
rithm. These measures are applicable here because, in essence, BEAST is 
a general linear regression model. The premise for this assessment is that 
a time-series algorithm is less unlikely to capture the true underlying 
dynamics (e.g., seasonality, trend, and abrupt changes) if the algorithm 

fits the time-series curve poorly. We also calcualated a confusion matrix 
of disturbance/non-disturbance with 254 randomly selected pixels in 
the watershed as a complementary test of the algorithm (Supplementary 
Materials). 

Second, we gathered ancillary data from multiple sources as inde-
pendent references to contextualize and validate the disturbance results 
associated with BEAST-detected changepoints from the Landsat time 
series. The first ancillary dataset we considered is the annual land cover/ 
land use maps from USDA’s Cropland Data Layer (CDL). CDL is recog-
nized as the best land use product with a resolution of ~30 m for the US; 
it is available annually for our study area starting from the year 2006. 
The CDL dataset was used to identify changes in land cover types before 
and after disturbance activities occurred. The second ancillary datasets 
we chose are GIS layers of human activities from multiple public sour-
ces. These include a layer of mine sites from the Ohio Department 
Natural Resouces (ODNR) Division of Mineral Resources (https://oh 
iodnr.gov), a layer of wellpads from the ODNR Division of Oil and 
Gas, a layer of electric transmission lines from Homeland Infrastructure 
Foundation (https://hifld-geoplatform.opendata.arcgis.com), a layer of 
gas transmission pipelines from the U.S. Energy Information Adminis-
tration (https://www.eia.gov/state/maps.php), and layers of hazardous 
liquid pipelines and hydrocarbon liquid gas pipelines from the National 
Pipeline Mapping System (https://www.npms.phmsa.dot.gov). All the 
layers contain information about the locations and extents of the in-
dustrial projects and sometimes the timelines of the projects (e.g., dril-
ling and spud dates for the wellpads). 

Other ancillary data sources we considered include a variety of high- 
resolution aerial photos and satellite imagery over time that helped us to 
visually and manually identify how and when the landscape was 
disturbed over selected sites. We particularly leveraged historical high- 
resolution images in Google Earth and Google Earth Engine. Addition-
ally, our time-series analysis derives all types of abrupt changes in NDVI, 
regardless of their exact drivers. Many of the abrupt changes, especially 

Fig. 3. Diagnostic statistics to evalute BEAST as a regression tool: (a) the observed vs BEAST-fitted NDVI values; (b) the distribution of residuals for all pixels.  

Fig. 4. Numbers of disturbed pixels detected by BEAST over individual wellpads within different time windows around the actual disturbance dates.  
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those related to subtle variation in surface greenness, were attributed 
not to human activities but to natural factors (e.g., extreme weather). 
Therefore, we also resorted to rainfall and crop survey data to interpret 
our results (https://www.nass.usda.gov). 

3. Results and discussion 

3.1. Evaluation of BEAST 

As a statistical model, BEAST fits the observed data well with an R2 of 
0.91 and RMSE of 0.066, according to a total of 100,000 randomly 

sampled time series across the watershed. Furthermore, residuals errors 
in the fitted NDVI were found to closely followed a normal distribution 
(Fig. 3(b)), as tested by the Shapiro-Wilk normality statistic (p-value =
0.38). The test result shows that the residuals of the BEAST model did 
not violate the normality assumption and also confirms that our filtering 
and screening in the preparation of the Landsat images removed the 
majority of outliers (e.g., those associated with snow, clouds, and 
shadows), which otherwise would have skewed the residual distribu-
tion. In addition, a disturbance/non-disturbance confusion matrix 
indicated that the overall accuracy of BEAST to detect disturbed pixels 
was 77.2%. 

Fig. 5. Spatiotemporal dynamics of disturbances detected by BEAST over a selected wellpad site. The top two rows are the BEAST-estimatated probabilities of 
seasonal and trend changepoints (i.e., scp and tcp) from the year 2000 to 2017; the third row is the concomitant annual Cropland Data Layer (CDL) land cover 
products, available only after 2006. Google Earth images in the bottom panel are used to illustrate land cover changes that have been captured by BEAST but not CDL. 

Fig. 6. Three more hydraulic fracking wellpads as examples to further highlight the difference between land disturbances detected by BEAST (left) and the Cropland 
Data Layer (CDL) annual land cover dynamics products (right): Brigher pixels indicate higher occurrence probabilites of seasonal or trend changepoints (the first two 
columns on the left), as detected by BEAST. The CDL maps on the last three columns wrongly showed essentially no land cover changes before and after the wellpad 
onconstructions. 
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BEAST was also able to capture the disturbances caused by the 
constructions of most wellpads when comparing with ground reference 
data–ONDR’s fracking wellpad layer, which contains details about 51 
wellpads such as geographical boundaries and operation and construc-
tion dates. In particular, BEAST captured abrupt changes within 60 days 
around the initial development of the wellpads on 45 of the 51 wellpad 
sites (i.e., a rate of 88%), over which pixels the vegetation was partially 
or fully removed. Such results are comparable to a conventional 
trajectory-based change-detection algorithm that was verified for forest 
disturbances at larger scales using both areas where trees were totally 
cut (90%) and partially cut (77%) (Kennedy et al., 2007). 

On average, the wellpads for HF activities in the watershed cover 21 
pixels, but only 13 of them (i.e., 60.5%) were identified to have 
changepoints within the 2-month window of the reported initial devel-
opment dates. This result shouldn’t be interpreted as the ineffectiveness 
of BEAST. Rather, two major reasons explain the mismatching. First, the 
data missing rates of the NDVI time series were large; for more than 55% 
of the cases over the wellpad pixels, there were no Landsat observations 
available within 60 days around the construction dates—an inherent 
data problem independent of the algorithm. Indeed, the missing data 
problem became less of an issue when we increased the size of the time 
windows around the construction dates and found more pixels labeled as 
changepoints by BEAST (Fig. 4). Second, the construction dates reported 
by ODNR are just a point in time, but the real construction and distur-
bances are a prolonged process that started from a point in space and 
spanned multiple years in time. The spatiotemporal dynamics of such 
disturbances were captured by BEAST in the estimated changepoint 
probabilities over time (Fig. 5). 

BEAST captured land dynamics that were real but missed in con-
ventional classification-based land-use products (Figs. 5 and 6). For 
example, only 4 of the 51 wellpads were found in the annual CDL maps 
to have land cover types altered before and after the construction years 
over large fractions of the pads; for all the other wellpads, the land use 
types roughly remained the same before and after the wellpad 

constructions, although there might have some minor changes in land 
covers attributable mostly to random classification errors. Using the 
sample site in Fig. 5 as an example, the disturbances from the fracking 
activities starting from the year 2012 were evident in the BEAST- 
estimated probabilities for seasonal changepoints or trend change-
points (top, Fig. 5), but the wellpad footprint was not revealed at all in 
the annual CDL land cover maps and was classified mostly as pastures 
instead of open land/impervious surfaces. In 2015, part of this fracking 
site was even misclassified as corn and soybean. Three other examples 
are also given in Fig. 6 to illustrate similar observations. 

Despite our emphasis being on industrial activities, we also found 
that BEAST can detect other types of changepoints, such as tree-felling, 
and agriculture management practices, whereas these changes were not 
captured by the traditional classification-based approaches (e.g., the 
CDL products). For example, before the year 2011, the site in Fig. 5 was a 
pasture field and in 2011 large portions of it were converted to two 
irregularly-shaped corn fields—a pattern detected by BEAST but not 
shown in the CDL annual land dynamics products. Sometime between 
2005 and 2006, a narrow strip of trees north of the site was removed. 
The average width of this strip was 21 m, less than the 30-m resolution of 
Landsat. This sub-pixel disturbance was detected by BEAST; in partic-
ular, the pixels involved were estimated to have abrupt changes in 
seasonality and trend with an average probability of 84%. 

3.2. Time series decomposition by BEAST 

The BEAST algorithm decomposed the NDVI time series of a pixel 
into seasonality and trend signals, embedded with changepoints. We 
used a sample site in Fig. 1 to show more details about the dynamic 
nature of the BEAST results. The pixels that cover this wellpad experi-
enced vegetation loss between June and August in 2014, according to 
the Landsat time-series imagery (Fig. 7(a)). The loss was captured by 
BEAST with an abrupt change in both the seasonality and trend response 
curves (Fig. 7(b)). The seasonality curve explicitly demonstrated 

Fig. 7. Season and trend trajectories of NDVI on a selected wellpad to illustrate the BEAST time serires decompotion a. (a) NDVI time-series images around the 
wellpad. (b) Results of decomposed NDVI time series by BEAST include response curves of seasonality (top panel) and trends (middle panel), and abrupt changes with 
probabilities (bottom panel). The blue line in the middle panel represents an average trend of all candidate models, accompanied by a credible interval (lightly 
shaded area) at the 95% level. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 9. The overall BEAST-detected trend in NDVI (i.e., surface greenness) averaged over the whole watershed. Around 2003 and 2013, a larger number of pixels 
were detected with abrupt changes (i.e., the drops in the trend curve marked by the two arrows), and theses changes coincided with a drought-inflicited crop loss in 
2003 and the peak in hydraulic fracturing activities in 2013, respectively. 

Fig. 8. Mapping the number of changepoints detected by BEAST in both (a) seasonal and (b) trend signals for each pixel: In the color composites used, bluish areas 
were less frequently disturbed (e.g., high probabilities of detecting no changepoints as exemplified at Site S0 and T0) whereas reddish areas were more frequently 
disturbed (e.g., Site S2 and T2). 
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declines in the magnitude of the NDVI time series after well pads were 
constructed. In the trend curve, a sudden drop was identified before the 
construction date (red line) of the wellpad. This is consistent with the 
practice of clearing vegetation before well pad development. The bot-
tom panel in Fig. 7(b) depicts a unique feature of the BEAST algorithm– 
the probability curve of changepoint occurrence over time that gives the 
likelihood of a changepoint occurring for any given point in time. 

Changepoints could appear in both seasonal and trend signals, and 
they do not necessarily occur at the same time. Seasonal changepoints 
normally indicate some phenological shifts whereas trend changepoints 
mean a shift from one regime to another regime in land surface dy-
namics. The numbers of seasonal changepoints (i.e., scp) are not 
necessarily the same as those of trend changepoints (i.e., tcp). We 
mapped the numbers of scp and tcp separately by dividing them into 
three categories: zero, one, and more than one changepoint (Fig. 8). The 
number of changepoints is an unknown parameter automatically esti-
mated by BEAST. In our results, 24% of the watershed showed at least 
one seasonal changepoint and 41% showed at least one trend change-
point, with a probability of 0.5. These areas where scp and tcp co- 
occurred correspond to regions with large or dramatic disturbances (e. 
g., altered land use, stand-replacing forest clearing, and development of 
wellpads). 

We noted that BEAST only estimated when and how many abrupt 
changes occurred in a time series but couldn’t determine what caused 
the changes. The specific drivers have to be identified by referring to 
additional reference information. All the known human activities in our 
reference data were successfully detected by BEAST (more results re-
ported in Section 3.3). For example, a large portion of changepoints was 
detected around 2013, as also suggested by the large drop in the BEAST- 

estimated NDVI trend averaged over the watershed (Fig. 9); the timings 
of these changepoints coincide with the peak in the number of oil gas 
wells permits granted. Beside these known industrial activities, we 
suspect that the many other changepoints, especially tcp, are associated 
with short-time anomalies in surface greenness due to natural drivers 
such as extreme climate events. For example, the year 2003 saw the 
second largest number of changepoints detected, the majority of which 
were subtle variations with low magnitudes (e.g., the slight dip in the 
averaged NDVI trend in Fig. 9). The changepoints largely occurred over 
agricultural fields and the region experienced unusual drought in 2003; 
therefore, the occurrences of these changepoints were associated with 
drought-induced crops, which were further confirmed by the dip in the 
reported crop yield by NASS. 

3.3. Spatiotemporal patterns of disturbances 

We further mapped the maximum probability of disturbances in the 
probability curves (Fig. 10) and their associated dates (Fig. 11) for each 
pixel to show spatiotemporal patterns of disturbances in the watershed. 
In the map of maximum probabilities, spatial patterns of disturbances 
could provide insight into what activities caused them. For example, 
line-shaped patterns might indicate the development of right-of-ways 
for utility transmission lines whereas patch-shaped patterns could 
identify mining activities. Some disturbances with these two patterns 
(highlighted using red rectangles in Fig. 10) were confirmed to corre-
spond to known industrial activities related to the development of power 
lines, gas pipelines, as well as surface coal and minerals mining. We also 
confirmed the patterns by visually comparing the BEAST results with 
Google Earth images; the two were consistent with each other, despite 

Fig. 10. Spatial patterns in the maximum probability of land disturbances from the year 2000 to 2017, together with examples to show the matching between the 
BEAST-detected patterns and high-resolution Google Earth images. 
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the discrepancy in spatial resolutions. 
The BEAST-detected dates and locations of disturbances closely 

resembled those revealed by Landsat images when evaluated at an 
annual level. We chose this temporal resolution due to a lack of infor-
mation about the actual dates of all these disturbances. In particular, two 
areas with black squares were highlighted and enlarged to show how 
estimates of dates by BEAST were consistent with remote sensing ob-
servations (Fig. 11). The first area has a line-shaped disturbance by a 
hazardous liquid pipeline which was estimated to happen in 2012 and 
2013 by BEAST. This result was confirmed by two Landsat images in 
November 2012 and June 2013. The second one is an abandoned surface 
mining site where disturbances were estimated by BEAST to happen 
primarily in 2016. These disturbances come from vegetation recovery 
based on the Landsat-8 images in May 2015 and September 2016. 

3.4. Human-introduced disturbances in working landscapes 

We additionally analyzed the relative areas of disturbances or altered 
land use associated with the known human activities. For mining ac-
tivities, only active ones were considered because inactive sites were 
developed before 2000, earlier than our time series data. The classifi-
cation of land cover that was most altered by mining activities was de-
ciduous forest with a total of 316.4 ha (Table 1). While for line-shaped 
activities, the most affected land cover was evergreen forest (838.7 ha 
in total) that was impacted mainly by electric transmission lines and gas 
pipelines (406.4 and 311.7 ha). Overall, the top three land cover cate-
gories that had been altered in the watershed were forest, pasture/hay, 
and farmland, with an estimated area of 1192.5, 240.0, and 133.4 ha, 
respectively (Table 1). 

Human activities have altered and fragmented the landscape of the 

Fig. 11. Estimated dates of disturbances with the maximum probability that occurred between 2012 and 2017 in the watershed. Examples of (a) line- and (b) patch- 
shaped disturbances were highlighted using black squares and the corresponding areas were enlarged in the lower panels. The left and right insets in the lower panels 
are from Landsat 7 imagery (RGB = 3-2-1) for (a) and Landsat 8 imagery (RGB = 4-3-2) for (b). 
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Yellow Creek watershed frequently and sometimes, severely. The ac-
tivities addressed in this research, for example, have disturbed 9.7% of 
the watershed over 18 years (Fig. 12(a)). The greatest loss of vegetated 
area was due to surface mining activities (i.e., SCM) with nearly 3479 ha 
when considering both inactive and active sites, followed by the 
development of utility pipelines (ETL and GTP) with about 1100 ha 
(Fig. 12(b)). Although the disturbed area seems relatively small, the 
disturbances are discontinuous with various patterns (e.g., lines, 
patches) and not concentrated in particular areas but spread over the 
entire watershed. The environmental and ecological consequences of 
these changes are far-reaching, raising many local management issues, 
especially related to impacts on water quality (Jackson et al., 2013) and 
habitat. 

We further examined the lands disturbed by HF activities in detail. 
Thirty-three well pads were initially covered with grassland/pasture and 

14 with deciduous forest. Four wellpads were located on agricultural 
land that grew corn, soybean, or alfalfa before they were developed. 
Shale gas extraction using HF is still at the center of considerable debate, 
mostly focused on environmental quality instead of landscape distur-
bance. Not surprisingly, our results confirmed that the fraction of 
landscapes disturbed by HF was relatively small, which was only 91.8 ha 
(about 2.7% of the land areas disturbed by surface mining) and the most 
impacted land cover was pasture/hay (45.6 ha). 

HF-caused disturbances have not been analyzed in most studies that 
examine the environmental impacts of HF (Burton et al., 2014). One 
reason could be that disturbance caused by HF is possibly overshadowed 
by other environmental impacts of HF activities (e.g., drinking water 
contamination). But as shown in Fig. 12(a), HF activities (construction 
and development of well pads and access roads) have a higher density 
than mines, and the density is increasing. Indeed, access roads and well 

Table 1 
Areas (ha) of land cover types altered by human activities.  

Note: HF – Hydraulic Fracturing; SCM – Surface Coal Mine (active); SIMM – Surface Industrial Minerals Mine (active); ETL – Electric Transmission Line; GTP – Gas 
Transmission Pipeline. 
HLP – Hazardous Liquid Pipeline; HGLP – Hydrocarbon Gas Liquid Pipeline. Numbers in red color indicate the most impacted land cover area for each type of human 
activity. 

Fig. 12. Fragmentation of the Yellow Creek watershed and comparison of vegetated areas disturbed by different human activities. (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the web version of this article.) 
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pads create a network of bare ground or non-vegetated land over the 
watershed that can break apart continuous forest habitat and create 
barriers for wildlife movement (Bischof et al., 2017; Proctor et al., 2012) 
or corridors for invasive plant species (Lemke et al., 2019). Their po-
tential impacts on land fragmentation should not be overlooked (Kiviat, 
2013). 

3.5. Change detection at sub-pixel levels 

The BEAST algorithm was shown to effectively capture fine-scale 
land disturbances. Not only because its performance is comparable 
with conventional algorithms (Section 3.1), but also because it could 
describe abrupt changes more flexibly than conventional algorithms. 
The biggest difference between BEAST and conventional change- 
detection algorithms is that conventional algorithms rely on a “best- 
fit” model to make inference while BEAST embraces an ensemble of 
candidate models and quantifies their relative usefulness. The use of 
ensemble modeling allows BEAST to deal with complicated cases such as 
disturbance at sub-pixel levels. Given an abrupt change that only covers 
half or one-third of a pixel (e.g., partial clear of vegetation), conven-
tional change-detection algorithms give a response of either “Yes” or 
“No” (Wang et al., 2019; Zhao et al., 2019). While BEAST describes such 
sub-pixel changes with probability–a ratio between the number of 
candidate models that detect the change and the total number of 
candidate models (bottom, Fig. 7). The magnitude of the probability 
could tell how many candidate models respond to such a change and 
how many do not (Fig. 13). 

The description of sub-pixel changes with probability curves makes 
BEAST suitable to detect fine-scale human disturbances since capturing 
the partially disturbed pixels is necessary especially when they are the 
majority type of pixels representing disturbances in remote sensing 
imagery. For example, the well pad highlighted in Fig. 1 is represented 
by 25 pixels in Landsat images and 64% of them are with vegetation 
partially removed. There are chances that some of these partially 
disturbed pixels are missed by conventional algorithms with a response 
of “No” but could be captured by BEAST with a low probability value. 

4. Conclusions 

We investigated disturbances to landscape resulted from various 
human activities (e.g., HF, gas pipelines, and mining activities) as 
identified by NDVI trajectories in a watershed in Ohio using an ensemble 
change detection algorithm–BEAST. The BEAST algorithm detected 
abrupt changes in land cover over 88% of the wellpads. A complemen-
tary test using the confusion matrix of disturbance to non-disturbance 

demonstrated an overall accuracy of 77.2%. Such results indicated 
that the BEAST algorithm is a reliable tool for change detection. The 
algorithm could also capture disturbances at sub-pixel levels, which is 
highly needed for monitoring fine-scale disturbances. 

Due to the small spatial extents, fine-scale human disturbances, for 
example, those introduced by HF activities, are difficult to capture and 
thus their impacts on the landscape were overlooked. BEAST provides 
the possibility to detect these fine-scale landscape disturbances and 
quantify their disturbed areas. Activities related to the development of 
HF were confirmed to cause disturbances at the local scale, but the total 
area of vegetated land cover lost to HF activities was minor (about 98 
ha) compared with other activities. Such loss accounts for only 2.7% of 
the land disturbance caused by surface mining. 

Detecting abrupt changes within time series is the key to under-
standing the acting processes and drivers of disturbances and their im-
pacts on the environment. This paper will prompt further research 
regarding the ecological impacts of fine-scale land cover disturbances 
with a better understanding of the spatial and temporal patterns of 
disturbance at the finer resolution. For example, research addressing the 
environmental impacts of local land cover changes on the landscape in 
regards to habitat fragmentation, surface runoff and stream water 
quality, and invasive species movement would benefit from the 
advanced information of detected disturbance using BEAST or other 
change detection algorithms. 
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