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Abstract: It is now well-established that a variety of singularities can be
characterized and observed in optical wavefields. It is also known that these
phase singularities, polarization singularities and coherence singularities are
physically related, but the exact nature of their relationship is still somewhat
unclear. We show how a Young-type three-pinhole interference experiment
can be used to create a continuous cycle of transformations between classes
of singularities, often accompanied by topological reactions in which
different singularities are created and annihilated. This arrangement serves
to clarify the relationships between the different singularity types, and
provides a simple tool for further exploration.

© 2015 Optical Society of America

OCIS codes: (260.6042) Singular optics; (260.5430) Polarization; (260.2110) Electromagnetic
optics; (030.1640) Coherence; (350.5030) Phase.

References and links
1. M.S. Soskin and M.V. Vasnetsov, “Singular Optics,” in: Progress in Optics, edited by E. Wolf (Elsevier, 2001),

42, 219–276.
2. M.R. Dennis, K. O’Holleran and M.J. Padgett, “Singular optics: optical vortices and polarization singularities,”

in: Progress in Optics, edited by E. Wolf (Elsevier, 2001), 53, 293–363.
3. J.F. Nye and M.V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London 336, 165–190 (1970).
4. J.F. Nye, Natural Focusing and Fine Structure of Light (Institute of Physics, 1999).
5. M.V. Berry and M.R. Dennis, “Polarization singularities in isotropic random vector waves,” Proc. R. Soc. Lond.

A 457, 141–155 (2001).
6. I. Freund, “Polarization singularity indices in Gaussian laser beams,” Opt. Commun. 201, 251–270 (2002).
7. I. Freund, “Polarization singularities in optical lattices,” Opt. Lett. 29, 875–877 (2004).
8. R.W. Schoonover and T.D. Visser, “Polarization singularities of focused, radially polarized fields,” Opt. Express

14, 5733–5745 (2006).
9. H.F. Schouten, G. Gbur, T.D. Visser and E. Wolf, “Phase singularities of the coherence functions in Young’s

interference pattern,” Opt. Lett. 28, 968–970 (2003).
10. G. Gbur and T.D. Visser, “Coherence vortices in partially coherent beams,” Opt. Commun. 222, 117–125 (2003).
11. D.G. Fischer and T.D. Visser, “Spatial correlation properties of focused partially coherent light,” J. Opt. Soc. Am.

A 21, 2097–2102 (2004).
12. S.B. Raghunathan, H.F. Schouten and T.D. Visser, “Correlation singularities in partially coherent electromagnetic

beams,” Opt. Lett. 37, 4179–4181 (2012).
13. S.B. Raghunathan, H.F. Schouten and T.D. Visser, “Topological reactions of correlation functions in partially

coherent electromagnetic beams,” J. Opt. Soc. Am. A 30, 582–588 (2013).
14. G. Gbur, T.D. Visser and E. Wolf, “Hidden singularities in partially coherent and polychromatic wavefields,” Jnl.

of Optics A 6, S239–S242 (2004).

#251061 Received 7 Oct 2015; revised 24 Nov 2015; accepted 27 Nov 2015; published 24 Dec 2015 
© 2015 OSA 28 Dec 2015 | Vol. 23, No. 26 | DOI:10.1364/OE.23.034093 | OPTICS EXPRESS 34093 



15. G. Gbur and T.D. Visser, “Phase singularities and coherence vortices in linear optical systems,” Opt. Commun.
259, 428–435 (2006).

16. F. Flossmann, U.T. Schwarz, M. Maier, and M.R. Dennis, “Polarization singularities from unfolding an optical
vortex through a birefringent crystal,” Phys. Rev. Lett. 95, 253901 (2005).

17. F. Flossmann, U.T. Schwarz, M. Maier, and M.R. Dennis, “Stokes parameters in the unfolding of an optical
vortex through a birefringent crystal,” Opt. Express 14, 11402–11411 (2006).
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1. Introduction

The discipline of singular optics [1,2], which is concerned with singularities in the topology of
wavefields, has expanded dramatically over the past decade. It was originally concerned with
singularities in the phase of scalar wavefields [3], lines in three-dimensional space where the
amplitude of the field is zero and the phase is therefore undefined. Not long after, however,
singularities of polarization were also described [4–8]. These are lines of circular polarization
(C lines) on which the major axis of the polarization ellipse is undefined, and surfaces of linear
polarization (L surfaces) on which the handedness of the polarization ellipse is undefined. In
recent years, even more classes of singularities have been described. Singularities of the spec-
tral degree of coherence (called correlation vortices or coherence vortices) have been found in
partially coherent scalar wavefields, representing pairs of points where the field is completely
uncorrelated [9–11]. Generalizing correlation singularities to electromagnetic fields, so-called
eta singularities have been introduced [12, 13], which represent phase singularities of the elec-
tromagnetic correlation function.
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It is less appreciated that these seemingly different classes of wave singularities are, in fact,
closely related to each other. The connection between correlation singularities and phase sin-
gularities has been discussed in some detail [14, 15], and the connection between polarization
singularities and phase singularities has also been investigated [16–18]. However, very little
has been done to explore the full relationship between the different classes of singularities. It
was shown in 2008, though, that it is possible to use Young’s double-slit experiment to cre-
ate a cascade of singularities, in which changes in system parameters transform one class into
another [19]. However, these singularities were not typical, or “generic”, because of the two-
dimensional configuration in which they are created.

Young’s celebrated experiment, in which the light emanating from two pinholes or two slits
is made to interfere on an observation screen [20], has played a pivotal role in the develop-
ment of physical optics. The wave nature of light, and its transverse polarization properties
were both established using Young’s setup. The experiment was also used to demonstrate the
wave-particle duality of electrons [21]. In the field of plasmonics as well, basic experiments
involve two-slit configurations [22]. Furthermore, the foundations of optical coherence theory,
as developed by Zernike [23], stem from an analysis of Young’s experiment [24]. More re-
cently, multi-pinhole interferometers have been used to various ends. For example, it has been
suggested that they can be used to observe non-classical paths in quantum interference [25],
to probe optical angular momentum and optical vortices [26–28], and to create polarization
singularities [29].

In the present paper we introduce a special version of a Young three-pinhole interferometer
and show how it can be used to create a continuous cycle of generic, singular field patterns on
an observation screen. This is done by varying the polarization and coherence properties of light
emerging from individual pinholes. In this cycle, a variety of different topological reactions be-
tween singularities occur. The cycle begins with an array of coherent phase singularities, from
which polarization singularities, correlation singularities, and general electromagnetic correla-
tion singularities are created via a change of the pinhole parameters. This arrangement high-
lights the relationship between the different classes of optical singularities and demonstrates a
number of unusual effects.

2. Classes of optical singularities

A number of different classes of singularities have been discovered in optical fields; here we
review the main features of the types to be encountered in the three-pinhole arrangement that
we analyze. Phase singularities of the field component Ej, with j = x,y, occur at points where
E j(r,ω) = 0, and hence its phase is undefined. The topological charge s of such a singular point
is defined as [4]

s =
1

2π

∮
C

dφ , (1)

where φ is the phase of Ej, and the closed contour C that encloses the singularity is traversed in
a counter-clockwise manner. Continuity of the wavefield Ej implies that the topological charge
must have an integer value.

If the incident beam is random rather than deterministic, it has no definite field amplitude
and phase and it must be described by a 2× 2 electric cross-spectral density matrix [30] that
characterizes its state of coherence and polarization, namely

W(r1,r2,ω) =

(
Wxx(r1,r2,ω) Wxy(r1,r2,ω)
Wyx(r1,r2,ω) Wyy(r1,r2,ω)

)
, (2)
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where

Wi j(r1,r2,ω) = 〈E∗
i (r1,ω)E j(r2,ω)〉, (i, j = x,y). (3)

Here Ei(r,ω) denotes a Cartesian component of the electric field of a typical realization of the
statistical ensemble representing the beam. The angular brackets indicate an ensemble average.
The spectral density is defined as

S(r,ω) = 〈|E(r,ω)|2〉= TrW(r,r,ω), (4)

where Tr denotes the trace. The electromagnetic spectral degree of coherence η(r1,r2,ω) of
the field, which is a measure of the ability of the fields at points r1 and r2 to form interference
fringes when brought together, is defined as [30]

η(r1,r2,ω) =
TrW(r1,r2,ω)

[TrW(r1,r1,ω)TrW(r2,r2,ω)]1/2
. (5)

For fully coherent fields this definition reduces to

η(r1,r2,ω) =
E∗

x (r1,ω)Ex(r2,ω)+E∗
y (r1,ω)Ey(r2,ω)

|E(r1,ω)| |E(r2,ω)| . (6)

A coherence singularity occurs at pairs of points for which η(r1,r2,ω) = 0, and consequently
the phase of this correlation function is undefined. We note that such electromagnetic correla-
tion singularities can occur even when the field is fully coherent. This happens when the two
electric field vectors are orthogonal, i.e., when

E∗(r1,ω) ·E(r2,ω) = 0. (7)

This observation leads to a relation between polarization singularities and electromagnetic co-
herence singularities. Eq. (7) is satisfied, for example, when the field at r1 is linearly polarized
along x, and the field at r2 is linearly polarized along y. Both these points then lie on an L
line (not necessarily the same L line), and at the same time also constitute an electromagnetic
coherence singularity. We can therefore distinguish two types of electromagnetic coherence
singularities: those that occur in fully coherent fields, and those that occur in partially coherent
fields.

The existence of zeros of the function η even for fully coherent fields arises because this
quantity represents the visibility of interference fringes produced in Young’s experiment, and
visibility can be affected by both the statistical similarity of the field at the pinholes and by their
polarization. An alternative definition of the degree of coherence, that emphasizes statistical
similarity, is given in [31]; we will not consider it further here.

If the degree of polarization of the field is unity and its state of polarization is uniform, e.g.,
if the field is linearly polarized or left-circularly polarized everywhere, then the field and its
correlation function may be treated as scalar quantities. The correlation properties of such a
scalar wave field, U(r,ω), are characterized by the cross-spectral density function [30]

W (r1,r2,ω) = 〈U∗(r1,ω)U(r2,ω)〉, (8)

and its normalized version, the spectral degree of coherence

μ(r1,r2,ω) =
〈U∗(r1,ω)U(r2,ω)〉√

S(r1,ω)S(r2,ω)
, (9)
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with the spectral density S(r,ω) defined as

S(r,ω) =W (r,r,ω). (10)

At each position r the cross-spectral density matrix (2) can be decomposed in a unique man-
ner into two parts, viz. W(p)(r,r,ω), which represents the fully polarized part of the field, and
W(u)(r,r,ω), which represents the completely unpolarized part of the field [20, 32], i.e.,

W(r,r,ω) = W(p)(r,r,ω)+W(u)(r,r,ω). (11)

These two parts have the form

W(p)(r,r,ω) =

[
B(r,r,ω) D(r,r,ω)

D∗(r,r,ω) C(r,r,ω)

]
, (12)

W(u)(r,r,ω) =

[
A(r,r,ω) 0

0 A(r,r,ω)

]
, (13)

with A, B, C ≥ 0, D ∈ C, and

BC−DD∗ = 0. (14)

These four quantities can be expressed in terms of the elements of W(r,r,ω) as

A(r,r,ω) =
1
2

[
Wxx +Wyy −

√
(Wxx −Wyy)2 +4|Wxy|2

]
, (15)

B(r,r,ω) =
1
2

[
Wxx −Wyy +

√
(Wxx −Wyy)2 +4|Wxy|2

]
, (16)

C(r,r,ω) =
1
2

[
Wyy −Wxx +

√
(Wxx −Wyy)2 +4|Wxy|2

]
, (17)

D(r,r,ω) =Wxy. (18)

We note that this decomposition applies locally at each point, but that an electromagnetic wave
cannot be generally decomposed into an unpolarized wave and a fully polarized wave, see [33].
The spectral Stokes parameters pertaining to the fully polarized part of the field are defined
as [30]

S0(r,ω) = B+C =
√
(Wxx −Wyy)2 +4|Wxy|2, (19)

S1(r,ω) = B−C =Wxx −Wyy, (20)

S2(r,ω) = D+D∗ =Wxy +Wyx, (21)

S3(r,ω) = i(D∗ −D) = i(Wyx −Wxy) . (22)

The angle ψ between the major axis of the polarization ellipse and the positive x axis is given
by the expression [20]

ψ =
1
2

arctan

(
S2

S1

)
, (0 ≤ ψ < π). (23)

In the remainder we will use the normalized version of the Stokes parameters by defining

si(r,ω)≡ Si(r,ω)/S0(r,ω), (i = 1,2,3). (24)
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Two types of polarization singularities can be identified. At C points, points where s3(r,ω) =
±1, the polarization is left circular or right circular. This means that the orientation angle ψ
is undefined. At L lines, there where s3(r,ω) = 0, the polarization is linear. At such lines the
handedness of the polarization ellipse is undefined. Just as phase singularities possess a con-
served topological charge, C points possess a conserved topological index. For a given wave
field feature, the topological index may be defined as the number of rotations that the polariza-
tion ellipse undergoes as one traverses a closed path around the feature in a counter-clockwise
manner. Because the polarization field is continuous everywhere on the path, the ellipse must
return to its original orientation in one full circuit; however, because the ellipse is symmetric
under 180◦ rotations, the minimum topological index is ±1/2. The polarization ellipses in the
vicinity of a C point can take on one of three generic forms. Their major axis can from a star,
a lemon or a monstar pattern [4]. A star has index −1/2, whereas a lemon and a monstar both
have index +1/2. Under smooth transformations of the system parameters, both topological
charge and index are conserved quantities.

μ  = 1, θ = 0

μ  = 1, θ = �/2

μ  = 0, θ = �/2

I

II

III

μ  = 0, θ = �/3

IV

μ  = 0.7, θ = �/3

μ  = 0.7, θ = 0

V

VI

Fig. 1. Illustrating the continuous cycle in which the coherence parameter μ and the polarization
angle θ are smoothly varied, and eventually brought back to their initial values. Stage I is at the
top of the figure.

In the next section we describe a thee-pinhole interferometer in which all these different
types of singularities can be created by altering the state of polarization and coherence of the
incident beam in a cyclical manner. This is achieved by varying the polarization angle θ at the
first pinhole, and the coherence parameter μ . The precise definition of the latter is given in the
next section. The various stages of the cycle are depicted in Fig. 1.

3. Young’s experiment with three pinholes

We consider an opaque screen with three identical pinholes that lie on the vertices of an equi-
lateral triangle (see Fig. 2). The screen is located in the plane z = 0, and is illuminated by a
normally incident electromagnetic beam of frequency ω . An interference pattern is formed on
a second, parallel screen at a distance Δz. The two-dimensional position vectors of the pinholes
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O
x

y

Δ z

(a)

1

2 3

μ

μ

1

θ

exp (i2π/3) exp (i4π/3)

(b)

Fig. 2. Three identical pinholes in an opaque screen occupying the plane z = 0. The pinholes
are located symmetrically with respect to the origin O of a right-handed Cartesian coordinate
system. An interference pattern is formed on a second, parallel screen a distance Δz away (a).
The three pinholes with their relative phase, coherence parameter, and orientation of the electric
field (b).

are

ρ1 = ρ(0,1), (25)

ρ2 = ρ(−
√

3/2,−0.5), (26)

ρ3 = ρ(
√

3/2,−0.5), (27)

respectively. Assuming that the angles of diffraction are small, the electric field at a position r
on the observation screen is given by the sum of the three pinhole contributions, i.e.

E(r,ω) =
3

∑
i=1

Ki(r,ω)E(ρ i,ω), (28)

where Ki(r,ω) is a propagator, given by the expression [20, Sec. 8.3]

Ki(r,ω) =− i
λ

eikRi

Ri
dA, (i = 1,2,3), (29)

with λ the free-space wavelength, and k the wavenumber associated with frequency ω . Fur-
thermore, dA denotes the area of each pinhole, and Ri is the distance from pinhole i to the
observation point r. The two-dimensional vectors E(ρ i,ω) denote the transverse electric field
incident at the three pinholes.
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4. Transformation of singularities

Stage I: Phase singularities

The incident fields at the pinholes, E(ρ i,ω) with i = 1,2,3, are first taken to be fully coherent
(μ = 1). Both E(ρ2,ω) and E(ρ3,ω) are linearly polarized along the x direction. The field
E(ρ1,ω) however, has a polarization which makes a variable angle θ with the x axis, see Fig. 2.
The relative phase differences of the three fields are set such that

E(ρ1,ω) =C(cosθ x̂+ sinθ ŷ), (30)

E(ρ2,ω) =Cei2π/3x̂, (31)

E(ρ3,ω) =Cei4π/3x̂, (32)

with C an arbitrary complex-valued amplitude, and x̂ and ŷ unit vectors along the x and y
axis. A time-dependent factor exp(−iωt) is suppressed. As we will discuss shortly, the phase
differences are chosen such that a phase singularity centered on the z axis is produced. To
simplify the notation, we from now on no longer display the ω dependence of the various
quantities.

Initially the polarization angle of the field at pinhole 1 is set to zero, i.e., we start the cycle at
the top of Fig. 1 with μ = 1 and θ = 0.

The spectral density distribution on the observation screen then has a hexagonal shape, as can
be seen from Fig. 3(a). For a point on the central z axis the three propagators Ki(r) appearing
in Eq. (28) all have the same value, and hence it readily follows that now

Ex(0,0,z) = 0. (33)

In other words, the electric field component Ex has a phase singularity at position (x,y,z) =
(0,0,Δz). It is seen from Fig. 3(b), in which the phase of Ex is plotted, that this singularity
has topological charge s = 1. Other phase singularities, some with s = 1, others with s = −1,
are visible as well. Although the sharp boundaries between different colors might suggest oth-
erwise, we note that the phase changes continuously everywhere, with the exception of the
singular points.

1

0.5

0

-0.5

-1

y 
[m

m
]

-1             -0.5               0              0.5               1

x [mm]

-1             -0.5               0              0.5               1

1

0.5

0

-0.5

-1

x [mm]

y 
[m

m
]

2

4

6

8

0

(a)                                                                              (b)

Fig. 3. The spectral density S(x,y) = |E(x,y)|2 in arbitrary units (a), and the color-coded phase
of Ex(x,y) on the observation screen (b). In this example the polarization angle θ = 0, μ = 1,
λ = 0.5×10−6 m, ρ = 0.5 mm, and Δz = 1 m.
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For completeness’ sake we note that the z axis also represents a singularity of the Poynting
vector [34]. Because the field everywhere is linearly polarized, no C points exist at stage I.

Stage II: Polarization singularities and coherence singularities in fully coherent fields

Next θ , the angle of polarization of the electric field at pinhole 1, is gradually increased from 0
to π/2. Since this breaks the symmetry of the system, we expect the central phase singularity
on the z axis to decay into a pair of polarization singularities, namely two C points of opposite
handedness, and with opposite index, which are separated by an L line. This is because when
we describe the field in terms of the left and right-circular polarization basis (ε+,ε−) [35], this
phase singularity of Ex is a zero of both ε+ and ε−. Increasing θ perturbs the highly symmetric
field distribution on the observation screen, and the zeros of ε+ and ε− will no longer coincide.
This means that two C points, with opposite handedness, have been created. Conservation of
index implies that one singularity has index 1/2 whereas the other has an index −1/2. This
illustrated by Fig. 4(a) in which the orientation of the major axis of the polarization ellipse is
plotted in the region around the z axis. Two polarization singularities can be seen. Tracking the
change of the orientation of the major polarization axis around these features shows that the
upper one is a lemon with index 1/2, whereas the lower one is a star with index −1/2. A plot
of the contours of the Stokes parameters, Fig. 4(b), shows that the lemon has s3 = 1, i.e. it is
a point of right circular polarization (a zero of ε−), whereas the star has s3 = −1, indicating
it is a point of left circular polarization (a zero of ε+). Because the Stokes parameters on the
Poincaré sphere are continuous functions of the point of observation [36], we expect that the
two C points are separated by a region of linear polarization, i.e. an L line at which s3(x,y) = 0.
This is indeed the case as is evidenced by the orange contour line. The same creation of a pair
of C points separated by an L line is also found to happen at the other phase singularities of
Fig. 3(b) when the angle θ is increased from zero. The pairs move away from each other and
remain extant as θ reaches its maximum value of π/2.

-0.01 0 0.01-0.01 0 0.01

0.01

0

-0.01

x [mm] x [mm]

y 
[m

m
]

(a)                                                                   (b)
0.01

0

-0.01

y 
[m

m
]

[t]

Fig. 4. The local orientation of the major axis of the polarization ellipse after the angle of
polarization at pinhole 1 has been increased from zero to θ = 0.03. The phase singularity of
Ex at (0,0) in Fig. 3 has decayed into two polarization singularities: a lemon (top) and a star
(bottom) (a). Selected contours of the Stokes parameters for the same region as in the left-hand
panel: s1 = 0 (blue), s2 = 0 (green), s3 = 0.998 (red), s3 =−0.998 (black) and s3 = 0 (orange)
(b). All other parameters are the same as in Fig. 3.
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Changing the polarization angle θ of the field at pinhole 1 also changes the electromagnetic
spectral degree of coherence as defined by Eq. (5). For fully coherent fields, as studied at this
stage of the cycle, it reduces to the form of Eq. (6). We take both r1 and r2 to be on the observa-
tion screen (i.e., z1 = z2 = Δz), and from now on suppress the z dependence in our notation. If
we start out with θ = 0, then for any choice of the reference point (x1,y1), the electromagnetic
spectral degree of coherence will be singular if (x2,y2) is taken as one of the phase singularities
of Ex shown in Fig. 3(b). Let us choose a fixed reference point (x1,y1) = (0.45,0) mm. In Fig. 5
we plot the phase of η(x1,y1,x2,y2) for selected values of the angle θ . It is seen in panel (a)
that the phase singularity of Ex at (0,0) is indeed also a singular point of the electromagnetic
spectral degree of coherence (with topological charge s = 1). In other words, the two points
(0.45,0) mm and (0,0) on the observation screen form an electromagnetic coherence singular-
ity. Apart from the singularity on the z axis, other coherence singularities can be seen as well.
On increasing the angle θ , pairs of singularities with opposite topological charge are moving
closer to one another (b). Around θ = 0.77 these pairs all annihilate, resulting in a singularity-
free field as shown in panel (c). On further increasing the polarization angle to its maximum
value of π/2 the phase contours of η(x1,y1,x2,y2) change somewhat, but no new singularities
are created (d). We note that the behavior of the electromagnetic degree of coherence is quite
sensitive to the choice of the reference point r1. In summary, at Stage II we have C points, but
no coherence singularities. Animations of the evolution of the phase of η(x1,y1,x2,y2) and the
major polarization axes are given in Visualization 1 and Visualization 2, respectively.

Stage III: Coherence singularities and polarization singularities in partially coherent fields

The singularities of the spectral degree of coherence that we have encountered so far occur in
fully coherent fields. We next make the field partially coherent by randomizing E(ρ2) while
keeping its polarization along the x axis. E(ρ1) and E(ρ3) remain fully correlated. We consider
the case for which the first element of the cross-spectral density matrix W(ρ2,ρ3) equals

Wxx(ρ2,ρ3) = |C|2μ ei2π/3, (34)

with μ real-valued and 0 ≤ μ ≤ 1 (see Fig. 2(b)). The upper bound corresponds to full coher-
ence, the lower bound corresponds to a complete absence of coherence. For all intermediate
values the fields are said to be partially coherent. The scalar coherence parameter μ is designed
to be the magnitude of the degree of coherence between the pinholes. From Eq. (34) all other
matrix elements can be derived, and from them the electromagnetic degree of coherence, as
given by Eq. (5), can then be calculated. This is described in Appendix A.

We change the field from fully coherent to partially coherent by gradually decreasing μ .
We start at the situation depicted in panel (d) of Fig. 5, i.e, the reference point (x1,y1) =
(0.45,0) mm, and the polarization angle θ = π/2. First μ = 1, meaning that the fields at
the three pinholes are fully coherent. The phase contours of the spectral degree of coherence
η(x1,y1,x2,y2) for that situation are reproduced in Fig. 6(a). If μ is gradually decreased we see
the birth of partially coherent electromagnetic correlation vortices near μ = 0.57, see panel (b).
On further decreasing μ pairs of singularities of opposite charge move away from each other,
as shown in panel c. No further topological reactions are observed as μ reaches its lowest value
0, which corresponds with the situation shown in panel (d).

As the coherence parameter μ is decreased from unity, the polarized portion of the field
initially displays both C points and L lines, however, near μ = 0.5 pairs of C points annihilate
each other. But these events are not the inverse of the creation process that was presented in
Fig. 4 of stage II. There the pairs of C points had opposite handedness because they were
created from a decaying phase singularity. Here C points with equal handedness (i.e., with
the same value of s3) annihilate, which does therefore not result in the creation of a phase
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Fig. 5. Color-coded plot of the phase of the spectral degree of coherence η(x1,y1,x2,y2) on the
observation screen. The reference point is taken as (x1,y1) = (0.45,0) mm. The polarization
angle θ = 0 (a), 0.65 (b), 1.12 (c), and π/2 (d). All other parameters are the same as in Fig. 3.

singularity of the polarized part of the field. This annihilation process in which two vertical
contours of s1 = 0 (blue) coalesce and disappear is illustrated in Fig. 7(a). After this event the
contours of s2 = 0 (green) and the L lines (orange), remain in existence, as shown in panel (b).
We conclude that at Stage III, we have no C points, but coherence singularities are present.
Animations of the evolution of the phase of η(x1,y1,x2,y2) and the major polarization axes are
given in Visualization 3 and Visualization 4, respectively.

Stage IV: Polarization ellipse fields

If we now rotate the polarization angle θ partly back from π/2 to π/3, while keeping μ fixed
at 0, no topological reactions are observed. However, the polarization ellipses pertaining to the
polarized portion of the field slightly change their shape and orientation. The coherence singu-
larities remain during this parameter change (not shown). So, at Stage IV there are no C points
but coherence singularities exist. Animations of the evolution of the phase of η(x1,y1,x2,y2)
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Fig. 6. Color-coded plot of the phase of the spectral degree of coherence η(x1,y1,x2,y2) on the
observation screen. The reference point is taken as (x1,y1) = (0.45,0) mm. The polarization
angle θ = π/2. The coherence parameter μ = 1 (a), 0.57 (b), 0.40 (c), and 0 (d). All other
parameters are the same as in Fig. 3.

and the polarization major axes are given in Visualization 5 and Visualization 6, respectively.

Stage V: Creation of polarization singularities

In this stage we keep the angle θ fixed at π/3, and gradually increase the coherence parameter
μ to 0.7. This first changes the orientation of the polarization ellipses. In Fig. 8(a) the major axis
of these ellipses are shown for the case μ = 0.4. Near μ = 0.5 pairs of polarization singularities,
namely C points with opposite handedness separated by an L line, are created. For larger values
of μ these singular points move away from each other. They can be clearly seen in Fig. 8(b). The
nature of these singularities can be deduced from analyzing contours of the Stokes parameters.
These are presented in Fig. 9. The blue and green curves correspond to s1 = 0 and s2 = 0,
respectively. Their intersections are C points with either s3 = 1 (red) or s3 = −1 (black). L
lines, the contours s3 = 0, are plotted in orange. We see, for example, that the star singularity
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Fig. 7. Contours of the Stokes parameters for the case μ = 0.51 and θ = π/2, just before
the annihilation of pairs of C points with the same handedness (a). Shown are contours of
s3 = 0.9999 (red), s3 = −0.9999 (black), s1 = 0 (blue), s2 = 0 (green), and s3 = 0 (orange).
In (b) the situation for μ = 0 and θ = π/2 is plotted. All other parameters are the same as in
Fig. 3.
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Fig. 8. Showing the major axis of the polarization ellipse field for two values of the coherence
parameter μ with the polarization angle θ = π/3. In panel (a) μ = 0.4 and no C points are
exist. In panel (b) μ = 0.7 and several C points have been created. All other parameters are the
same as in Fig. 3.

near (x,y) = (−0.2,−0.2) mm has s3 = 1, meaning that it is right-handed. It is separated by
an L line from the left-handed lemon near (x,y) = (−0.2,−0.4) mm that has s3 =−1. During
this change of μ the coherence singularities disappear (not shown). In summary, at Stage V we
have polarization singularities, but no coherence singularities. Animations of the evolution of
the phase of η(x1,y1,x2,y2) and the polarization major axes are given in Visualization 7 and
Visualization 8, respectively.
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Fig. 9. Contour lines of the Stokes parameters corresponding to Fig. 8(b), i.e., θ = π/3 and
μ = 0.7. The different contours represent s1 = 0 (blue), s2 = 0 (green), s3 = 0.995 (red), s3 =
−0.995 (black), and s3 = 0 (orange). All other parameters are the same as in Fig. 3.

Stage VI: Annihilation of polarization singularities

We now keep the coherence parameter μ fixed at 0.7 while the polarization angle θ is gradually
changed from π/3 to 0. The C points that were created in the previous stage move back together
as θ decreases. This is illustrated in Fig. 10. In panel (a) Stokes contours for θ = 0.9 are plotted.
Notice that the blue curve s1 = 0 self-intersects, which corresponds to a saddle point. Within the
numerical accuracy, this saddle points lies on an orange curve s3 = 0, which means that at this
point s2 = 1, i.e., the (polarized part of the) field there is linearly polarized under an angle of 45◦
with the x axis. If θ is further decreased, the s1 = 0 contours breaks up into two closed curves
that gradually contract until θ = 0.8, at which point the curves cease to exist and two pairs of C
points annihilate. The contours of s2 = 0 and s3 = 0 remain, as shown in panel b. At the points
where the contours cross each other, s1 = 1, which means that the field there is x-polarized.
If the angle θ reaches its original value of zero, the polarized portion of the field becomes,
obviously, everywhere x-polarized. Therefore at Stage VI we find no C points, but correlation
singularities are present (not shown). Because the polarization is uniform, these are, in fact,
scalar correlation singularities. Animations of the evolution of the phase of η(x1,y1,x2,y2) and
the polarization major axes are given in Visualization 9 and Visualization 10, respectively.

We can complete the cycle by increasing the coherence parameter μ from 0.7 to unity, bring-
ing the system back to Stage I. This means that the field changes from being partially coherent
to fully coherent. Visualization 11 shows the phase singularity evolution from stage VI to the
initial Stage I.

5. Conclusions

We have demonstrated that it is possible to design a simple three-pinhole interferometer in
which multiple types of singularities can be created and annihilated in a continuous, cyclical
manner. A rich variety of transformations was observed. For instance, the breakup of a phase
singularity into a pair of C points of opposite handedness is seen, along with the annihilation
of pairs of C points with identical handedness which does not produce a phase singularity. The
interrelations between phase, correlation and eta singularities are demonstrated, and it is seen
by example that a decrease in coherence can in fact lead to a creation of eta singularities in some
cases. For this particular system configuration, a striking anti-correlation between the presence
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Fig. 10. Contour lines of the Stokes parameters when μ = 0.7 and θ = 0.90 (a) and θ = 0.75.
The different contours represent s1 = 0 (blue), s2 = 0 (green), s3 = 0.995 (red), s3 = −0.995
(black), and s3 = 0 (orange). All other parameters are the same as in Fig. 3.

of coherence singularities and the presence of C points was observed.
This interferometer represents a simple tool which can be used to study and/or generate

various types of singularities simultaneously, but also the transitions between them.

Appendix A

In this Appendix we present the derivation of the other relevant elements of the cross-spectral
density matrices. Since, according to Eqs. (30) and (32),

Ex(ρ1) = cosθ e−i4π/3Ex(ρ3), (35)

it follows Eq. (34) that

Wxx(ρ2,ρ1) = cosθ e−i4π/3Wxx(ρ2,ρ3), (36)

= |C|2μ cosθ e−i2π/3. (37)

Furthermore, because

Ey(ρ1) = (sinθ/cosθ)Ex(ρ1), (38)

we find both that

Wxy(ρ1,ρ1) = |C|2 sinθ cosθ , (39)

Wxy(ρ2,ρ1) = (sinθ/cosθ)Wxx(ρ2,ρ1), (40)

= |C|2μ sinθ e−i2π/3. (41)

Similarly, we have from Eq. (35) that

E∗
x (ρ1) = cosθ ei4π/3E∗

x (ρ3). (42)

This implies

Wxx(ρ1,ρ3) = cosθ ei4π/3Wxx(ρ3,ρ3), (43)

= |C|2 cosθ ei4π/3. (44)
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Finally, Eq. (38) also gives

Wyx(ρ1,ρ3) = (sinθ/cosθ)Wxx(ρ1,ρ3), (45)

= |C|2 sinθ ei4π/3. (46)

All other elements of the three cross-spectral density matrices W(ρ2,ρ1), W(ρ1,ρ3) and
W(ρ2,ρ3) are zero. It immediately follows from Eqs. (30)–(32) that the spectral densities as-
sociated with the x and y components of the field at the three pinholes, which are given by the
“diagonal” matrix elements, equal

Sx(ρ1) =Wxx(ρ1,ρ1) = |C|2 cos2 θ , (47)

Sy(ρ1) =Wyy(ρ1,ρ1) = |C|2 sin2 θ , (48)

Sx(ρ2) =Wxx(ρ2,ρ2) = |C|2, (49)

Sx(ρ3) =Wxx(ρ3,ρ3) = |C|2. (50)

On making use of Eq. (28) and the above expressions for the cross-spectral density matrices we
find that the spectral density at a point (x,y) on the observation screen equals

S(x,y) = 〈|Ex(x,y)|2〉+ 〈|Ey(x,y)|2〉, (51)

= |C|2
[
|K1(x,y)|2 + |K2(x,y)|2 + |K3(x,y)|2 +2μ cosθ Re

{
K∗

2 (x,y)K1(x,y)e
−i2π/3

}

+2cosθ Re
{

K∗
1 (x,y)K3(x,y)e

i4π/3
}
+2μ Re

{
K∗

2 (x,y)K3(x,y)e
i2π/3

}]
. (52)

In a similar way it can be derived that

TrW(x1,y1,x2,y2) = |C|2 {K∗
1 (x1,y1)K1(x2,y2)+K∗

2 (x1,y1)K2(x2,y2)+K∗
3 (x1,y1)K3(x2,y2)

+μ cosθ
[
K∗

1 (x1,y1)K2(x2,y2)e
i2π/3 +K∗

2 (x1,y1)K1(x2,y2)e
−i2π/3

]

+ cosθ
[
K∗

1 (x1,y1)K3(x2,y2)e
i4π/3 +K∗

3 (x1,y1)K1(x2,y2)e
−i4π/3

]

+μ
[
K∗

2 (x1,y1)K3(x2,y2)e
i2π/3 +K∗

3 (x1,y1)K2(x2,y2)e
−i2π/3

]}
. (53)

The above two expressions allow us to calculate the evolution of the spectral degree of coher-
ence η(x1,y1,x2,y2), as given by Eq. (5), as the angle θ and/or the coherence parameter μ is
being changed.
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