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Fractional vortex Hilbert’s Hotel
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We demonstrate how the unusual mathematics of transfinite
numbers, in particular, a nearly perfect realization of Hilbert’s
famous hotel paradox, manifests in the propagation of light
through fractional vortex plates. It is shown how a fractional
vortex plate can be used, in principle, to create any number of
“open rooms,” i.e., topological charges, simultaneously. Frac-
tional vortex plates are therefore demonstrated to create a sin-
gularity of topological charge, in which the vortex state is
completely undefined and in fact arbitrary. These results hint
that transfinite mathematics is much more common and im-
portant to optical systems than previously imagined. ©2016
Optical Society of America
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(260.6042) Singular optics.
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It seems to be an unspoken adage of theoretical physics that all
fields of mathematics, no matter how abstract, paradoxical, or
seemingly divorced from reality, inevitably find their realization
or application in physical systems. One of the strangest such
fields, which until recently seemed somewhat immune to this
adage, is the study of transfinite numbers, originally investigated
by Cantor [1]. The smallest transfinite number is the size of the
set of natural numbers, typically labeled by X. In Cantor’s analy-
sis, every infinite set that can be put into one-to-one correspon-
dence with the natural numbers is equivalent, making statements
such as Ny + 1 = N, and Ry + N = N, quantitative (for more
details see, for instance, [2]).

A demonstration of this strangeness is known as “Hilbert’s
Hotel,” originally attributed to David Hilbert in a 1924 lecture
but popularized by Gamow some years later [3]. We imagine a
hotel with a countably infinite number of rooms and no vacan-
cies, with rooms labeled 1,2,3,.... Though the hotel is completely
filled, it is always possible to add a new guest by moving every
current guest to the next highest-numbered room. This can be
done to free up any finite number of rooms, and indeed can even
be done to accommodate a countably infinite number of new
guests.

In recent years, it has been demonstrated that this mapping
can be achieved in quantum mechanical systems with a countably
infinite number of modes. A system that can accommodate a
single new “guest” was introduced by Oi er a/. [4] in the context
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of cavity QED, in which all quantum amplitudes are shifted up a
level, leaving an unoccupied vacuum state. More recently,
Potocek et al. [5] demonstrated a quantum-optical system that
maps each state to a state with twice the original quantum num-
ber, thus realizing a Hilbert Hotel with an infinite number of
new guests.

However, an even more overt realization of Hilbert’s Hotel can
be realized with an entirely classical field. A decade ago, it was
theoretically postulated [6] and experimentally observed [7] that
an optical beam passing through a half-integer spiral phase plate
produces a chain of optical vortex pairs in space that is, in prin-
ciple, infinite. In this Letter, we demonstrate that this chain
mimics exactly Hilbert’s Hotel, and that the mathematics of trans-
finite numbers are in fact a key ingredient in the behavior of the
system; this relationship does not appear to have been previously
recognized. Furthermore, we extend the original example to
demonstrate that it is possible to simultaneously incorporate
any finite number of additional vortex “guests” in this system with
a straightforward modification.

The study of phase singularities in optical wavefields has grown
over the past few decades into its own vibrant subfield of optics,
known as singular optics [8,9]. A singularity typically manifests as
a line of zero intensity in three-dimensional space, around which
the phase has a circulating or helical structure, leading them to be
known as optical vortices. These vortices are robust and generally
persist under smooth perturbations of the wavefield, such as
propagation through a weak phase screen, though their location
and evolution may be changed by the perturbation. The simplest
examples of optical vortices appear in monochromatic paraxial
Laguerre—Gauss beams; those beams with nonzero azimuthal or-
der 7 have line singularities on their propagation axis. The phase
in the waist plane of several typical beams is shown in Fig. 1. The
phase singularity can be identified as the point at which all colors
(phases) meet.

It is to be noted that the phase increases or decreases by an
integer multiple of 27 in a closed circuit around the singularity.
The number of multiples is known as the zopological charge r of the
vortex, and the total charge within a closed path C may be de-
termined by an integral of the gradient of the wavefield phase

w(r), ie.,
1
= fc Vi (r) - dr. (1)

The topological charge is a conserved quantity under smooth
perturbations, which implies both that vortices may be created
or destroyed only in pairs of zero net charge, and that the net
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Fig. 1. Phase of Laguerre~Gauss beams in the waist plane, for orders (a) =0, m=1; (b) n =2, m = 2; and (c) n = 0, m = -3.

topological charge within a path C can change only when an
unbalanced vortex crosses this path. When the path C is the entire
cross section of an optical beam, it would seem that a vortex must
move to or from infinity to produce a net change in the topologi-
cal charge of a beam. We will see here how Hilbert’s Hotel pro-
vides an alternative.

The earliest experiments on vortex beams typically generated
them using a spiral phase plate consisting of a ramp of dielectric
material [10], as illustrated in Fig. 2. Assuming geometric propa-
gation through the material, plates can be designed to have a
transmission function #(¢) = exp[im¢], with ¢ the azimuthal an-
gle and m an integer, therefore imparting the needed phase twist
on the beam. There is no prohibition, however, in fabricating a
phase plate that produces a fractional twist a; in such a case, what
is the behavior of the transmitted field?

Following Berry [6], from which many of the following propa-
gation formulas are derived, we assume a monochromatic scalar
plane wave of unit amplitude and wavenumber 4 normally inci-
dent on a phase plate with transmission function

t(p) = expliag], 2

where @ may be positive, negative, or fractional. Further, we ne-
glect the contribution of evanescent waves and restrict ourselves to
Fresnel diffraction. For an integer step a = %u, n > 0, it can be
shown that the field is of the form

U, (p, ¢, z) = explikz] exp[Ling] explikp?® [ 4z]

N
x \/é(—z) /2\/;

< [ Loy 2(kp* [42) = i] (i1 2 (kp? [42)],  (3)

where z is the distance from the phase plate and /(x) is a Bessel
function of order . To determine the field of a fractional phase
plate, we Fourier expand the fractional transmission function in
the form

Fig. 2. Illustration of a spiral phase plate.

explia] = exp[z'ﬂ:a]ﬂsin(ﬂa) i exolla[_ir;d)]. @

This leads to a field of the form

U.(r) = exp[ina}tsin(ﬂa) Z Z n_(l;l) 5)

n=-00

We look at the evolution of the phase of the field as & changes
from a = 4 to a =5 in Fig. 3. The plot is done in the scaled
variables £ = \/k/2zx and 1 = \/k/2zy. As a approaches
a = 4.5, a line of vortices are pair produced along the phase dis-
continuity. The first vortices appear close to the central axis, but
new pairs are rapidly produced at increasingly larger distances. At
a = 4.5, there are an infinite number of pairs along this line, as
demonstrated by Berry [6]. As a increases past a = 4.5, the sin-
gularities annihilate from the most distant points toward the ori-
gin, but with their opposite neighbor, instead of their original pair
member.

It is this process that represents, in a strikingly exact way, the
phenomenon of Hilbert’s Hotel. For a < 4.5, the topological
charge + = 4; in order to change to # = 5 at @ > 4.5, an unbal-
anced charge must appear over an infinitesimal change in a,
which would appear to violate the conservation of topological
charge discussed earlier. The system resolves this by creating a
countably infinite set of pairs of vortices. Let us imagine that each
positive charge represents a “room” and each negative charge a
“guest.” Each guest has stepped out of each room (through pair
creation), and then moves to the room on the right (pair
annihilation). The net result is a single additional unbalanced
positive charge or, in terms of Hilbert’s Hotel, a single additional
unoccupied room.

It can be said that, at least for this particular system configu-
ration, a new charge is created by creating a true singularity of
topological charge. When there are an infinite number of pairs,
the topological charge of the field is completely undefined, as, in
principle, any number of unbalanced charges could be taken from
the line and still have all remaining pairs annihilate. For this sys-
tem, then, new charge is created by applying transfinite arith-
metic. A plot of topological charge as a function of & is shown
in Fig. 4.

It should be noted that this version of Hilbert’s Hotel is differ-
ent from the example introduced in [5]. In the earlier paper, the
hotel is manifested in a mapping function of quantum states,
whereas in our case we have an actual infinite set of objects (vor-
tices) that interact with each other. Furthermore, our example
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Fig. 3. Evolution of the field transmitted through a fractional plate, for (a) @ = 4.4, (b) a = 4.47, (c) a = 4.5, (d) a = 4.55, (¢) @ = 4.65, and

(f) a = 4.995. For convenience, adjacent charges that were created together are shown in the same color.

suggests that Hilbert’s Hotel is intimately involved in the process
of topological charge creation.

We may extend this result to create an arbitrary number of
vortices in a single step, just as any finite number of guests
may be accommodated at once in the hotel. We consider the
transmission function given by

t(¢p) = explia(p - 2rwk/m)], 2ak/m < ¢p < 2n(k+1)/m,

(6)

with # =0, 1, ..., m - 1. This represents a multiramp phase plate
with  sections, each section of angular width 27/m, as illus-
trated in Fig. 5.

It can be shown that the Fourier series coefficients of this trans-
mission function vanish for any index not a multiple of ; for
n=gm, with g = ...,-2,-1,0,1,2, ..., we have

__sin(azn/m)

= 2ajm-q) expliam [m]. (7)

Com

Now, as a approaches the value 72/2, m lines of vortices are
created along each discontinuity of the transmission function, as
can be seen in Fig. 6(a). The same annihilation process happens

topological charge ¢

Fig.4. Topological charge as a function of @, calculated by numerically
evaluating the integral of Eq. (1) at VE +1* =20.

after @ = m/2, leaving an unbalanced 7 charges, as seen in
Fig. 6(b). The topological charge then jumps from 0 to 7 at once,
as illustrated in Fig. 6(c).

The discussion of an infinite set of objects in any physical sys-
tem must, of course, come with significant caveats. We have used
a plane wave of infinite transverse extent in this discussion, while a
realistic optical field must have finite width. It is possible, how-
ever, to calculate the propagation of a Gaussian beam with field
Uy(r') = exp[-r"?/2w}] directly through Fresnel propagation;
the formula for U, (r) that results is

U,(p, ¢, z) = R explikz & indp + ikp? [42(1 - R/2)]

2
% \/E(_l')ﬂ/% /M
8 2

< [ n1)/2(kp* R/ 42) = i] (411) 2 (kp* R/ 42)],
(8)

with R(z) = 1/(1 + iz/kw}). The formula is nearly identical to
that of Eq. (3), with only the addition of the propagation factor
R(z). Provided z < kw}, or we restrict ourselves to propagation
distances smaller than the Rayleigh range, the finite beam should
well approximate the infinite plane wave.

An illustration of the vortex chain in beams is shown in Fig. 7.
On propagation, the positions of vortices change significantly,
and other vortex pairs appear, but the chain remains. The infinite
line of vortices is, of course, eventually lost in the low intensity
regions of the beam tail, but we may say that the “signature” of
Hilbert’s Hotel still remains. As already mentioned, this chain for
a finite beam was already observed long ago [7], though not con-
nected with the hotel.

Fig. 5. Illustration of a multiramp phase plate, with 7 = 5.
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Fig. 6. Illustrating a jump of topological charge greater than 1 for 72 = 5. (a) The case @ = 1.95. (b) The case @ = 3.2. (c) The topological charge as a

function of a.
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Fig. 7. Illustrating the “vortex hotel” chain for a beam at different propagation distances, with (a) z = 0.5 m, (b) 2 = 0.7 m, (c) and z = 0.9 m, with

wy = 1 mm, 4 = 500 nm. Here o = 4.47.

It is to be noted that the calculations presented here used the
paraxial approximation inherent in the Fresnel diffraction formu-
las. It is not clear at this point whether the existence of the infinite
fractional vortex hotel depends upon this approximation, and this
will be investigated in future work.

The results presented here suggest that the mathematics of in-
finite sets can manifest in surprising ways in optics. They suggest
that transfinite mathematics may be hidden in even more optical
systems, particular those that have vortices present.
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