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Localized PT -symmetric directionally invisible scatterers
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We demonstrate how to create localized PT -symmetric directionally invisible scatterers directly from a
governing wave equation. Moreover, we can construct general non-PT -symmetric objects which exhibit
directional invisibility, though such an effect is typically associated with PT -symmetric objects. Whereas
previously the determining condition for an optical PT -symmetric device was a PT -symmetric complex
refractive index, we show that a broader condition, requiring only the scattering potential to be PT -symmetric,
leads to the same behavior. This enables the construction of PT -symmetric objects without a PT -symmetric
complex refractive index, effectively doubling the number of possible invisible objects. Consequently, the set of
gain-loss invisible objects is much broader than previously realized, and several examples are shown.
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In the study of Schrödinger’s equation, it was long assumed
that Hermitian Hamiltonians are required to guarantee that
a system’s energy eigenvalues are real [1,2]. The discovery
that a wide class of non-Hermitian Hamiltonians can still
show entirely real spectra, if they are parity-time (PT )-
symmetric [3], therefore has attracted much attention. In
optics, it has been suggested that the complex refractive index
n(r) = nR(r) + inI (r) is analogous to the quantum mechanical
potential, where the real part of the refractive index must be a
symmetric function of position r, i.e., nR(r) = nR(−r), while
the imaginary part of n(r) must be an antisymmetric function of
r, i.e., nI (r) = −nI (−r), to achieve PT -symmetric behavior
[4,5]. A number of these PT -symmetric systems have exhib-
ited directional invisibility—they are perfectly reflectionless
for one direction of illumination and strongly scattering in
the opposite direction [6,7]—suggesting a close relationship
between invisibility and PT symmetry.

These systems have, however, almost entirely been investi-
gated in layered, gain-loss, infinite slab geometries [8,9], with
the exception of two studies: One considers a specific localized
PT -symmetric scatterer designed using transformation optics
[10], while the other explores a PT -symmetric cylindrical
cloak with a gain coating on the incident side and a loss coating
on the exiting side for a microwave plane wave [11].

Recently, Gbur introduced a new technique [12] to design
a wide variety of directionally invisible objects directly and
without approximation from the governing wave equation,
subject to a number of boundary conditions. The problem
is framed in terms of classical scattering theory, in which the
object or scatterer is described by a scattering potential instead
of by its refractive index. Within this framework, the analogy
between the time-independent Schrödinger equation, in terms
of the quantum mechanical potential, and the Helmholtz
equation, in terms of the scattering potential, evinces the
relationship between PT symmetry in quantum mechanics
and PT symmetry in optics.

In this Rapid Communication, we explore the role PT
symmetry plays in achieving directionally invisible scatterers,
using the newly developed technique for constructing such
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objects. It is shown that PT symmetry is not a necessary
condition for the scatterer to be directionally invisible. It
is possible to design both PT -symmetric and non-PT -
symmetric directionally invisible objects, and an example of
each is presented. It is also shown that requiring the complex
scattering potential, instead of the complex refractive index, to
be PT -symmetric reveals a larger set of invisible structures.
Consequently, if the scattering potential is PT -symmetric,
there are two distinct solutions for the complex refractive
index. This implies that for an invisible object with a PT -
symmetric refractive index, there is an object that is also
invisible with a complementary anti-PT -symmetric refractive
index.

We begin by considering an object of refractive index n(r),
illuminated by a scalar monochromatic plane wave U (i)(r).
The total field U (r) satisfies the Helmholtz equation with an
inhomogeneous wave number,

[∇2 + n2(r)k2]U (r) = 0, (1)

where k = ω
c

= 2π
λ

, ω is the frequency, λ is the wavelength,
and c is the vacuum speed of light. Introducing the scattering
potential F (r) of the form

F (r) = k2

4π
[n2(r) − 1] (2)

and writing U (r) = U (i)(r) + U (s)(r), where U (i)(r) =
U0e

ikŝ0·r and U (s)(r) are the incident and scattered fields,
respectively, it is possible to write an inhomogeneous wave
equation for the scattered field [13],

(∇2 + k2)U (s)(r) = −4πF (r)U (r). (3)

Because the scattered field is present on both sides of
Eq. (3), it is generally not possible to solve this equation
analytically. However, we may find a nonscattering solution
by the following procedure. First, we define

U (s)(r) = U (i)(r)U (loc)(r), (4)

where U (loc)(r) is termed the local scattered field of the
inhomogeneous scatterer; it is the scattered field with the
oscillations of the incident field removed [12]. Next, we
apply techniques originally introduced to design nonradiating
sources [14] to design invisible objects. In this case, the
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FIG. 1. Real part (a) and imaginary part (b) of the scattering
potential F (r) associated with Eq. (7), (a = 1).

same boundary conditions which are typically applied to
nonradiating sources [15] are applied to the local field U (loc)(r)
that defines the invisible object, namely,

U (loc)(r)
∣∣
S

= 0, and
∂

∂n
U (loc)(r)

∣∣∣∣
S

= 0, (5)

where ∂
∂n

represents the derivative normal to the surface S,
which forms the boundary of the scatterer. The scattered field
U (loc)(r) = 0 outside of the scatterer. Writing the total field as
U (r) = [1 + U (loc)(r)]U (i)(r) and substituting it with Eq. (4)
into Eq. (3), one can directly solve for the scattering potential
F (r) that produces the scattered field, i.e.,

F (r) = − 1

4π

∇2U (loc)(r) + 2ikŝ0 · ∇U (loc)(r)

1 + U (loc)(r)
. (6)

We now note that a remarkable effect of this construction
is that any real-valued, mirror symmetric U (loc)(r) will result
in a localized, PT -symmetric directionally invisible object.
This occurs because the numerator of Eq. (6) consists of
a real, symmetric operation on U (loc)(r) and an imaginary,
antisymmetric operation on U (loc)(r), while the denominator
is real and symmetric.

To demonstrate such a PT -symmetric invisible object, we
consider a two-dimensional scatterer with ŝ0 = x̂ and U (loc)(r)
given by

U (loc)(r) = cos2

(
πr2

2a2

)
, |r| � a, (7)

where r =
√

x2 + y2 and a is the radius of the scatterer. The
potential is found by substituting Eq. (7) into Eq. (6). The
fields inside and outside of the scatterer are then calculated
using a Green’s function method similar to that used in
electromagnetic scattering theory [16]. The calculated real
and imaginary parts of the scattering potential can be seen to
be symmetric and antisymmetric, respectively, with respect to
position along the x̂ axis, as shown in Fig. 1. When a plane wave
(λ = 1) is incident from the left (the invisibility direction),
there is no scattered field [Fig. 2(a)], whereas there is strong
scattering when a plane wave is incident from the opposite
direction [Fig. 2(b)]. Unidirectional perfect transmission
has been observed in other PT -symmetric structures, for
example, in optically coupled fibers [6] and a unidirectional
reflectionless fiber [7]. The lack of reflection for one direction
in those cases was demonstrated by calculating and measuring
the transmission and reflection coefficients for both directions.
Perfect transmission is achieved by balancing gain and loss
for one direction of propagation. To compare these results
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FIG. 2. Real part of the total field (incident + scattered) when the
incident plane wave (λ = 1) propagates in (a) the positive x̂ direction
(θ = 0◦) and (b) the negative x̂ direction (θ = 180◦). The circles
indicate the domain of the scatterer, which has a radius a = 1. U0 is
the incident field amplitude.

to our two-dimensional scatterers, we use the scattering and
extinction cross sections. In the two-dimensional case, the
extinction cross section is the ratio of the rate of change
at which the energy is removed from the incident wave
normalized by the flux of incident energy; the result is a
quantity with units of length. The scattering cross section is
the ratio of the total power scattered by the object normalized
by the flux of incident energy, also with units of length.

Some time ago, Alexopoulos and Uzunoglu [17] showed
that while passive spherical particles (with loss only) always
possess a nonzero scattering and extinction cross section, an
active particle (with gain only) can have zero extinction cross
section. Not long after, however, Kerker showed that true
invisibility requires that both the scattering and the extinction
cross sections be equal to zero [18]; this is the criterion
we adopt in this paper. The equations leading to the ex-
pressions for the extinction and scattering cross sections for
two-dimensional scatterers are outlined here. The scattering
amplitude f (ŝ,ŝ0) is calculated from the following relationship
for large r:

U (s)(r ŝ) = f (ŝ,ŝ0)iπH
(1)
0 (kr), (8)

where H
(1)
0 (kr) is the zeroth-order Hankel function of the

first kind. This shows the dependence of the scattered field
on the scattering amplitude and the scattering potential. The
extinction cross section of the scattering object [13] is given
in terms of the forward-scattering amplitude f (ŝ0,ŝ0) by

Q(ext) = Q(abs) + Q(sca) = 4π

k
Im{f (ŝ0,ŝ0)}, (9)

where Q(ext) is the extinction cross section, Q(abs) is the
absorption cross section, and Q(sca) is the scattering cross
section. Since both the incident and scattering directions are
ŝ0, and ŝ0 is the forward direction, f (ŝ0,ŝ0) is also called
the forward-scattering amplitude. The scattering cross section
Q(sca) may be written in terms of the scattering amplitude as
follows:

Q(sca) =
∫

L

|f (ŝ,ŝ0)|2 dl, (10)

where L is the boundary outside of the scatterer. The scattering
cross section is calculated by combining Eqs. (10) and (8).

We calculated the extinction and scattering cross sections
for all directions of incidence ŝ0. Dividing the extinction and
scattering cross sections by the geometric cross section of
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FIG. 3. Extinction and scattering cross sections as a function of
incident angle [PT -symmetric example, Eq. (7)].

the scatterer, Q(geo) = 2λ, connects the cross section of the
energy extinguished or scattered to the size of the object. In the
invisibility direction (θ = 0◦), both Q(ext) and Q(sca) are equal
to zero (Fig. 3). In the opposite direction (θ = 180◦), there is
strong scattering, and, consequently, Q(sca) �= 0. Nevertheless,
for the opposite direction Q(ext) = 0: due to the presence of
the gain medium, it is possible to have strong scattering and
no extinction of the illuminating wave. This phenomenon is
analogous to that observed in Ref. [8] for a PT -symmetric
layered scatterer. Taking a closer look at Fig. 2(b) reveals that
when the wave is incident at θ = 180◦, the wave preferentially
scatters in specific directions. It may be of note that these
preferred scattering directions coincide with the peaks of the
scattering cross section (Fig. 3).

A question of some interest is the robustness of the invisi-
bility when the object is not perfect, for example, when errors
in manufacturing occur. There are many ways to simulate
such imperfections, such as adding spherical harmonic terms
or periodic linear distributions to the scattering potential. To
estimate the effect of manufacturing error, a periodic error
of the form c × (% error) × max |F (r)| cos 2πf x was added
to the scattering potential F (r) and a Monte Carlo simulation
was performed for the invisibility direction of the scatterer. The
spatial frequency was arbitrarily set to f = 6k. The amplitude
c representing the percent error was chosen from a Gaussian
distribution of values between 0 and 1. The max |F (r)| value
is the maximum value of the absolute value of the F (r) over

0

−0.8

−0.4

0

0.4

0.8

−50

−40

−30

−20

−10

−10

−5

0

5

10(b)(a)

−0.8

−0.4

0

0.4

0.8

−0.8 −0.4 0.4 0.8 0−0.8 −0.4 0.4 0.8

y/λy/λ

x/λ x/λ

F[
λ-
2 ]

F[
λ-
2 ]

FIG. 4. Real (a) and imaginary (b) parts of the scattering potential
for a non-PT -symmetric nonscattering scatterer (a = 1).

its entire domain without any error introduced. The simulation
was run 10 times for each percentage of error ranging from
zero to 10% in increments of 1%. At 10% error Q(ext)/Q(geo) =
0.03679 ± 0.02911 and Q(sca)/Q(geo) = 0.07734 ± 0.03388.
These numbers are only slightly larger than the values for the
perfect scatterer, Q(ext)/Q(geo) = 0.01775 and Q(sca)/Q(geo) =
0.02431, which are only due to computational effects.

We may also use the method to design invisible objects
that are gain-loss but not PT -symmetric. It turns out that they
share many properties with their PT -symmetric counterparts.
A simple local function that results in a non-PT -symmetric
scattering potential is given by

U (loc)(r) = sin π (x + y) cos2

(
πr2

2a2

)
, |r| � a. (11)

The real and imaginary parts of the scattering potential
associated with the U (loc)(r) in Eq. (11) are shown in Fig. 4.
Neither one has any particular spatial symmetry. When the
wave is incident on the scatterer in the invisibility direction
(+x̂ direction) the scattered field is localized to the domain of
the scatterer, and the object is invisible outside of its domain
[Fig. 5(a)]. In contrast, when the wave is incident on the
scatterer in the opposite direction, the object produces a strong
scattered field [Fig. 5(b)]. Again, in the invisibility direction
both the extinction and the scattering cross sections are equal
to zero, but in the opposite direction only the extinction cross
section is equal to zero [Fig. 5(c)]. Here, again the preferred
scattering directions appear to coincide with the peak of the
scattering cross sections [Fig. 5(b) and 5(c)]. In contrast
to the PT -symmetric case, where both the scattering and
extinction cross sections are symmetric [Fig. 3(c)], in this case
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FIG. 5. Real part of the total field (incident + scattered) when the incident plane wave propagates in (a) the positive x̂ direction (θ = 0◦)
and (b) the negative x̂ direction (θ = 180◦). The fields are scaled to the incident field amplitude U0. The circles indicate the domain of the
scatterer, which has a radius of a = 1. The extinction and scattering cross sections are shown in (c) for all angles θ or incidence.
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the extinction and scattering cross sections are asymmetric
[Fig. 5(c)].

In our examples, F (r) determines whether or not the object
isPT -symmetric, not n(r); this means that there are two values
of n(r) for each F (r). To explore the role of the symmetries
of each component, we substitute the complex definitions
of refractive index n(r) = nR(r) + inI (r) and the scattering
potential F (r) = FR(r) + iFI (r) into Eq. (2), and obtain for
the real and imaginary parts of the scattering potential

FR(r) = k2

4π

[
n2

R(r) − n2
I (r) − 1

]
, (12a)

FI (r) = k2

4π
2nI (r)nR(r). (12b)

If PT symmetry is defined by a symmetric real FR(r) and
an antisymmetric FI (r) with respect to the position r, then
the simplest PT -symmetric potentials will have either nR or
nI symmetric, and nI or nR antisymmetric with respect to
position, respectively. Therefore, requiring that the refractive
index be PT -symmetric forces the scattering potential to be
PT -symmetric but the converse does not hold true. Therefore,
requiring the refractive index to bePT -symmetric only results
in half of the PT -symmetric solutions for the scattering
potential. This relationship between the scattering potential
F (r) and the refractive index n(r) is also true for the non-PT -
symmetric objects.

The construction technique introduced here can be readily
extended to electromagnetic waves, and it seems likely that it
can be extended to scatterers which are invisible for multiple
directions of illumination. It is also possible to apply this
technique with different types of incident waves, for example,
one focused through a point, by rederiving an expression for
scattering potential with a different U (i)(r), provided that there
are no zeros in U (i)(r). Also, as shown in [8], it is possible

to extend the technique to make PT -symmetric directional
cloaks by requiring that U (loc)(r) = −U (i)(r) at the inner
boundary of the cloak and applying the boundary conditions
in Eq. (5) at the outer boundary of the cloak. An arbitrary
object may then be hidden inside the cloak for the directions
determined by the scattering potential.

Because the time-independent Schrödinger equation is
analogous to the Helmholtz equation, the method presented
here to design directionally invisible scatterers by applying
specific conditions to the scattering potential can be readily
applied to quantum mechanical systems by applying similar
specific conditions to the quantum mechanical potential.

In summary, a method to construct both PT -symmetric
and non-PT -symmetric directionally invisible scatterers has
been demonstrated. It requires that the scattering potential
be PT -symmetric instead of the refractive index, increasing
the number of possible PT -symmetric solutions and relax-
ing the PT -symmetry conditions imposed on the refractive
index.

Furthermore, because the function U (loc)(r) is only con-
strained to be smooth and to satisfy Eq. (5), it is possible to
create invisible gain-loss structures that have no particular
symmetry. The technique and observations presented here
demonstrate that a much broader variety of effectively PT -
symmetric objects exist in optics. In addition, they suggest a
stronger connection between invisibility and PT symmetry
than previously appreciated. Therefore, the set of gain-loss
invisible objects is much larger than previously realized, and
we have demonstrated a technique that, in principle, allows
construction of all gain-loss directionally invisible objects.

The authors thank Dr. Angela Davies from the Department
of Physics and Optical Science at UNC Charlotte for helpful
suggestions on how to simulate manufacturing error.
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