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We present an analytic calculation of the diffraction of a vortex beam by a triangular aperture. This calculation is
used to study the diffraction of multimode vortex beams and off-axis vortex beams. Implications of these results
for the effectiveness of diffraction as a vortex detection method are discussed. © 2016 Optical Society of America
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1. INTRODUCTION

It is now well-known that vortex-like phase structures can
manifest in the interference of coherent optical fields or be de-
liberately imprinted on optical beams. These vortices manifest
as lines of zero amplitude in 3D space, about which the phase
has a circulating or helical structure. The study of such optical
vortices and related structures is now its own subfield of optics,
known as singular optics [1,2].

Optical vortices are known to be stable topological features
of a wave field, resistant to perturbations of the amplitude and
phase of the field, such as propagation through atmospheric
turbulence [3] or obstruction by an obstacle [4]. Furthermore,
all vortices have a discrete topological charge m associated
with them, defined as the number of cycles by which the phase
ψ�r� of the field increases in a closed path C around the sin-
gular line, i.e.,

m ≡
1

2π

I
C
∇ψ�r� · dr: (1)

Because of the continuity of the wave field, the topological
charge can only take on integer values.

These two properties—stability and discreteness—have led
researchers to consider using vortices as carriers of information,
notably in free-space optical communications (see, for instance,
[5–7]). However, because the vortex is encoded in the phase
structure of the field, new detection techniques are needed in
order to efficiently and reliably identify the topological charge,
or charges, of a beam. One method that has shown much
promise, due to its simplicity and seeming lack of ambiguity,
is to diffract the vortex beam by a triangular aperture [8,9]. For
a vortex of topological chargem, the diffraction pattern will be a
triangular array of bright spots with jmj � 1 spots per side; the
orientation of the array can be used to deduce the sign of the
charge. This method has been shown to work for extremely

broadband vortex beams [10] and has been used to facilitate
analysis of the birth of new vortices in a so-called fractional
vortex beam [11].

In these earlier works, however, the calculations for triangu-
lar aperture diffraction have either been done through direct
numerical integration or by using only the phase of the field.
Furthermore, there seems to be no general research on the
properties of vortex diffraction when the beam is nonideal,
i.e., when it is off-center from the aperture central axis, or it
is a nonpure vortex mode, or both, with the exception of the
fractional vortex study mentioned above [11]. Such cases are
important to consider for applications like the aforementioned
free-space optical communications, in which mode mixing and
vortex wander are inevitable.

In this paper, we present an analytic derivation of the dif-
fraction pattern produced by a vortex beam of any order passing
through a triangular aperture. This method can take into ac-
count the nonideal cases mentioned above. We present exam-
ples of the calculation, which we compare with exact numerical
results, and discuss the implications of the examples for the use
of triangle aperture diffraction in vortex detection. We also note
how the calculations here can be extended to calculate the dif-
fraction from a polygonal aperture of any number of sides.

2. VORTEX DIFFRACTION BY A TRIANGULAR
APERTURE

We consider the configuration illustrated in Fig. 1. A Laguerre–
Gaussian vortex beam is diffracted through an equilateral tri-
angular aperture of side length a, centered on the z axis. We
consider the Fraunhofer diffraction of a vortex beam of azimu-
thal order �m (m ≥ 0) through the aperture; the beam has the
following form in the aperture plane:
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U�m�x; y� �
��x − x0� � i�y − y0��m

wm
0

; (2)

where the center of the vortex is displaced from the origin to
location �x0; y0�. We assume that the beam width w0 is signifi-
cantly greater than the size of the aperture a, so that we can
neglect the Gaussian envelope of the beam.

Following the earlier phase-only calculations in [8], we treat
the diffraction of light as being primarily an edge effect and
integrate over the boundary of the triangle. As has been long
known, such a geometrical theory of diffraction works well pro-
vided the aperture is larger than the wavelength of light [12].
Such an edge diffraction approximation is particularly appro-
priate for vortex beams, as the center of the vortex is a point
of zero amplitude. Unlike the earlier calculations, we explicitly
include the amplitude in the integration as well. The total dif-
fracted field may therefore be written in the form

U �kx; ky� ∼
I
C

��x − x0� � i�y − y0��m
wm
0

exp�−i�kxx � kyy��dl 0;

(3)

where C represents the boundary of the triangle, d l 0 is an
infinitesimal path element, and �kx; ky� is a transverse wave-
number. This diffracted field may represent the field in the far
zone of the aperture or the field in the rear focal plane of a 2f
focusing system, with the aperture in the front focal plane; we
leave off any scaling factors in the integral associated with these
specific cases. The integral along each face of the triangle may
be represented by a linear parameterization:

x � a�αx t � βx �; y � a�αyt � βy�; (4)

with −1∕2 ≤ t ≤ 1∕2. The constants αi and βi will be given for
each side of the triangle later in the discussion. Our diffraction
integral for a single side then becomes

U �kx; ky�∼ γ exp�−iχa�
Z

1∕2

−1∕2

�aαt � �aβ − z0��m
wm
0

exp�−iκat�dt;

(5)

with

α ≡ αx � iαy; (6)

β ≡ βx � iβy; (7)

γ ≡ ajαj; (8)

χ ≡ kxβx � kyβy � k · β; (9)

κ ≡ kxαx � kyαy � k · α; (10)

z0 ≡ x0 � iy0: (11)

This lengthy list of definitions allows us to evaluate the diffrac-
tion effects of all three sides of the triangle with the same no-
tation. To perform the integral, we expand the vortex part of
the integrand in binomial form, i.e.,

�aαt��aβ−z0��m�
Xm
n�0

m!
n!�m−n�!�aαt�

n�aβ−z0�m−n: (12)

We may then write

U �kx; ky� ∼
γ exp�−iχa�

wm
0

Xm
n�0

m!
n!�m − n�! �aβ − z0�

m−n�aα�n

×
Z

1∕2

−1∕2
tn exp�−iκat �dt : (13)

The integral may be evaluated by using the identityZ
tn exp�ct �dt � dn

d cn

Z
exp�ct �dt; (14)

which leads to the expressionZ
1∕2

−1∕2
tn exp�−iκat�dt�

�
i
κ

�
n d n

dan
j0�κa∕2�≡f n�κ;a�; (15)

where j0�x� is the zeroth-order spherical Bessel function,

j0�x� �
sin�x�
x

: (16)

We may finally write

U �kx;ky�∼
γ exp�−iχa�

wm
0

Xm
n�0

m!
n!�m−n�!�aβ−z0�

m−n�aα�nf n�κ;a�:

(17)

This expression, with the parameterizations of the three sides of
the triangle determined, gives us an analytic expression for the
diffraction of a vortex of arbitrary order and center position
from a triangular aperture. The parameterizations are readily
determined and are given in Table 1.

Equation (17) can be used to quickly evaluate the diffraction
pattern of one or more vortex beams superimposed with arbi-
trary axis positions. However, with some rearrangement, it can
also provide qualitative insight into the structure of the diffrac-
tion pattern. Such a rearrangement can be performed by use of
the generalized Leibniz rule

dm

dum
�f �u�g�u�� �

Xm
n�0

m!
n!�m − n�!

dnf �u�
dun

dm−ng�u�
dum−n

: (18)

Fig. 1. Illustration of the geometry related to the triangular
aperture.

Table 1. Coefficients of Parameterization for Each Side
of the Triangle

Side αx βx αy βy

1 1 0 0 −
ffiffiffi
3

p
∕6

2 −1∕2 1/4
ffiffiffi
3

p
∕2

ffiffiffi
3

p
∕12

3 −1∕2 −1∕4 −
ffiffiffi
3

p
∕2

ffiffiffi
3

p
∕12
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Equation (17) already looks very much like the Leibniz rule and
can be adapted to it with some rearrangement. We change the
variable of differentiation so that

f n�κ; a� �
1

�aα�n
�

d
d�−iκ∕α�

�
n
j0�κa∕2�: (19)

On substitution into Eq. (17), we have

U �kx; ky� ∼
γ exp

�
−iχa

�
wm
0

Xm
n�0

m!
n!�m − n�! �aβ − z0�

m−n

×
�

d
d �−iκ∕α�

�
n
j0�κa∕2�: (20)

Now, we note that

�aβ − z0�m−n � exp�iκ�aβ − z0�∕α�

×
�

d
d �−iκ∕α�

�
m−n

exp�−iκ�aβ − z0�∕α�: (21)

On substitution, we may apply the Leibniz rule and write

U �kx; ky� ∼
γ exp

�
−iχa

�
wm
0

exp�iκ�aβ − z0�∕α��iα�m

×
�
d
dκ

�
m
fexp�−iκ�aβ − z0�∕α�j0�κa∕2�g: (22)

Here, we have a remarkably concise expression for the diffrac-
tion of a vortex by a single edge of a triangular aperture. From
it, we may immediately see how the m-lobed triangular diffrac-
tion pattern appears for a vortex of order m. A given edge of the
triangle will produce a diffraction pattern that varies only in a
direction parallel to α, as κ � k · α. For the m � 0 case, the
largest value of U �kx; ky� will be at the origin of the function
j0�κa∕2�; this produces a line perpendicular to α centered on
the origin in the diffraction plane, as shown in Fig. 2(a). For the
m � 1 case, the largest values of U �kx; ky� will be the largest
values of d �j0�κa∕2��∕dκ, which will be two lines correspond-
ing with the slopes of the central peak of j0�κa∕2�; this is illus-
trated in Fig. 2(b). Each higher derivative of j0�κa∕2� will
introduce another bright line to the diffraction pattern; the
m � 2 case is shown in Fig. 2(c).

Equation (22) also suggests a crude way to estimate when
the displacement of the vortex, characterized by z0, significantly
affects the diffraction pattern. We first note that the peaks of
the diffraction pattern will be bounded, at least for low orders,
by the first zero of the zeroth-order spherical Bessel function,
located at κa � π; we restrict our attention, then, to this value.

We then note that the component of the complex exponential,
which includes z0, will have a small influence when				 κz0α

				 < 1: (23)

Substituting the value of κa into this expression, we find a con-
dition on z0 of the form				 z0a

				 < jαj
π

� 1

π
: (24)

We roughly expect that off-axis effects become significant
when jz0∕aj ∼ 0.318.

We will use the preceding results in the next section to study
the off-axis diffraction of vortex beams as well as the diffraction
of coherent superpositions. We will continue to use the edge
diffraction approximation in these calculations; however, it is to
be noted that the complete integral over the aperture can be
calculated, though the result is much more complicated. We
leave this calculation for Appendix A.

3. CALCULATIONS OF THE DIFFRACTION
PATTERN

We return to Eq. (17) for convenience and now use it to in-
vestigate the diffraction patterns of vortex beams diffracted by a
triangular aperture. In Fig. 3, we first plot the familiar case of
on-axis vortex diffraction, i.e., z0 � 0. It can be clearly seen
that we reproduce the familiar experimental and theoretical re-
sult that the most prominent part of the diffraction pattern is an
m� 1 lobed triangle, whose orientation depends on the sign of
the charge.

We next consider cases in which the vortex core is displaced
from the center of the aperture to a position �x0; y0�. Figure 4
shows the evolution of the diffraction pattern when the vortex
center is displaced in the vertical direction. The leftmost
intensity spot becomes gradually dimmer, while the right pair
gradually coalesce into a single spot. As suggested in the
previous section, the case y0 � 0.318a seems to be the thresh-
old at which the three-lobed pattern is significantly lost. When
the vortex core is moved entirely outside the aperture, as in
Fig. 4(d), the diffraction pattern is almost identical to them � 0
case; this is to be expected because the field within the aperture in
such a case will be almost identical to a tilted plane wave.

Similar observations hold when the vortex center is dis-
placed horizontally, as shown in Fig. 5. Here, the lower right
bright intensity spot transforms into the single intensity spot
that remains once the vortex center leaves the aperture region.

(a) (b) (c)

Fig. 2. Bright diffraction lines produced by the second side of the triangular aperture, for (a)m � 0, (b)m � 1, (c)m � 2. We have used a � 4λ,
w0 � 2a.
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Again we see that a displacement of roughly a∕3 is a threshold
at which the three-lobed pattern is lost.

The evolution of the three-lobed pattern into the single-
lobed pattern is highly directionally dependent. This suggests
that changes in the intensity pattern can be used to determine,
and correct, the displacement of the vortex beam. This ability
may be useful in applications such as free-space communica-
tions, where atmospheric turbulence tends to introduce
wandering of an optical beam and any vortices within it.

We also may use our analytic model to investigate the dif-
fraction pattern of a coherent superposition of several modes.
Such cases are of interest for two reasons: (1) multimode vortex
beams have been proposed as a way to multiplex information;
(2) propagation of a pure mode through atmospheric turbu-
lence induces mode mixing. We consider the particular case
in which we superimpose an m � 0 mode with an m � 1
mode, in the form

U �x; y� � �1 − b�U 0�x; y� � bU 1�x; y�; (25)

with b a real-valued weighting parameter. The results of the
calculation are shown in Fig. 6. It can be seen that the lower-
order mode dominates the diffraction pattern until the ampli-
tude of the higher-order mode is quite large, b � 0.9. On re-
flection, this is understandable because the higher-order modes

(a) (b) (c) (d)

Fig. 3. Diffraction pattern for various vortex orders, with (a) m � 0, (b) m � 1, (c) m � −2, (d) m � 4. We have used a � 4λ, w0 � 2a.

(a) (b)

(c) (d)

Fig. 4. Diffraction pattern for an m � 1 vortex, with x0 � 0 and
(a) y0 � 0, (b) y0 � 0.318a, (c) y0 � 0.636a, (d) y0 � 2a. We have
used a � 4λ, w0 � 2a.

(a) (b)

(c) (d)

Fig. 5. Diffraction pattern for an m � 1 vortex, with y0 � 0 and
(a) x0 � 0, (b) x0 � 0.318a, (c) x0 � 0.636a, (d) x0 � 2a. We have
again used a � 4λ, w0 � 2a.

(a) (b)

(c) (d)

Fig. 6. Diffraction pattern for a mixed-mode beam, with (a) b � 0,
(b) b � 0.5, (c) b � 0.9, (d) b � 1.0. We have again used a � 4λ,
w0 � 2a.
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naturally have a smaller intensity near their central axis, result-
ing in them being dominated by lower-order modes.

It is worth investigating how well the analytic results, which
only consider edge diffraction, compare with an exact fast
Fourier transform (FFT) calculation of the diffracted field from
the full aperture. An example of this comparison is shown in
Fig. 7, for horizontal displacement of the vortex center. It can
be seen that the primary multispot intensity structure is the
same for both methods; however, the large array of secondary
spots are not present in the exact result. Furthermore, it appears
that the multispot pattern is lost more quickly in the exact re-
sult. These results, however, show that the analytic calculation
maintains the most important aspects of the diffraction pattern.

4. CONCLUSIONS

We have derived an analytic model for the diffraction of a vor-
tex beam by a triangular aperture and have used this model to
provide insight into the nature of the diffraction pattern that
arises. The model also allows us to estimate the stability of the
vortex diffraction pattern in a number of circumstances, includ-
ing off-axis beams and mixed-mode beams. Though the system
appears to be relatively stable with respect to off-axis deflection
of a vortex, it does not appear to be as suitable for mixed-mode

beams, as the higher-order modes are generally overwhelmed by
the lower-order modes in the diffraction pattern. The results are
in good agreement with exact FFT calculations.

It is to be noted that authors have recently considered the
diffraction of vortex beams by other polygonal shapes (see, for
instance, [13]). Our method readily may be extended to incor-
porate these cases simply by determining the appropriate
parameters αx , αy, βx , and βy for the apertures in question.

APPENDIX A: COMPLETE INTEGRAL OF
VORTEX DIFFRACTION

In this article, we have emphasized the usefulness of our ana-
lytic model for understanding the physics of the diffraction
pattern and have noted that it provides results that are quali-
tatively accurate. It is worth noting, though, that it is possible to
extend the edge diffraction integral to an integral over an entire
area of the triangle, which may be evaluated analytically. The
final result is significantly more complicated than the edge case
and does not appear to provide the same insight of the simpler
model. Furthermore, the process outlined below introduces a
removable singularity at κ � 0, which must be accounted for.
For completeness, however, we give the calculation here.

We integrate Eq. (22) over the side length a from 0 to A,
where now A is the edge length of the triangular aperture. From
the original parameterization, we find that the integral must be
multiplied by

ffiffiffi
3

p
∕6 in order for the total integral over l and a

to cover an area equal to one-third of the total triangle area.
It is to be noted that the derivative of Eq. (22) could be

pulled completely outside the integrand if not for the presence
of the second exponential from the left. To deal with this, we let
κ → κ 0 in that exponent and then take the limit in the end as
κ 0 → κ, or

U �kx; ky�

∼
ffiffiffi
3

p

6
�iα�mjαj ∂

m

∂κm



e−iχaei�κ 0−κ��aβ−z0�∕α sin�κa∕2�

κ∕2

�
κ 0�κ

:

(A1)

If we write the sine function as complex exponentials, we then
have the expression

U �kx; ky� ∼ 2

ffiffiffi
3

p

6
�iα�mjαj ∂

m

∂κm



e−i�κ 0−κ�z0∕α e

−iχa

κ

× ei�κ 0−κ�aβ∕α e
iκa∕2 − e−iκa∕2

2i

�
κ 0�κ

: (A2)

Now the variable a only appears in complex exponents. We
may readily integrate with respect to a to find

U �kx; ky� ∼ a
ffiffiffi
3

p

6
�iα�mjαj ∂

m

∂κm



e−i�κ 0−κ�z0∕α

iκ

× �eiδ� j0�δ�� − eiδ− j0�δ−��
�

κ 0�κ

; (A3)

where, for convenience, we have introduced

δ� ≡ a�−χ � �κ 0 − κ�β∕α� κ∕2�∕2: (A4)

Each side of the triangle may be treated in the same manner to
derive the total field. For small values of m, the derivatives may

(a) (b)

(c) (d)

Fig. 7. Comparison of the analytic result with the FFT result,
for m � 1, y0 � 0, and (a), (c) x0 � 0, FFT and analytic, (b),
(d) x0 � 0.159a, FFT and analytic.

(a) (b)

Fig. 8. Comparison of the diffraction pattern of an m � 1 vortex
from (a) the FFT calculation and (b) the analytic formula, Eq. (A3).
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be calculated analytically and the limit κ 0 → κ taken to get the
final result.

A comparison between the exact FFT result and results
derived from Eq. (A3) is shown in Fig. 8. We see excellent
quantitative and qualitative results.

Funding. Air Force Office of Scientific Research (AFOSR)
(FA9550-13-1-0009).
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