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Superoscillations, oscillations of a bandlimited signal at
frequencies greater than its band limit, have been verified
both theoretically and experimentally. The design of such
superoscillatory waves, however, has typically relied on com-
plicated mathematics. We introduce a simple Fourier
method to construct superoscillations in the transverse plane
of an optical field in the form of optical vortices. © 2016
Optical Society of America

OCIS codes: (260.6042) Singular optics; (050.4865) Optical vortices;

(050.1970) Diffractive optics.
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In Fourier analysis, it was long assumed that the fastest
oscillations that could occur in a bandlimited signal could
have a period no shorter than 2π∕ωL, where ωL is the
highest nonzero frequency of the signal. In the past 20 years,
however, it has been shown that a signal can oscillate arbitrar-
ily fast in the presence of closely spaced zeroes. Berry was
the first to draw broad attention to this [1], and these so-
called superoscillations have been investigated in the fields
of quantum mechanics [2,3], signal processing [4,5], and
optics [6–8].

Superoscillations have been shown to exist in the trans-
verse plane of monochromatic optical fields in the presence
of optical vortices [7]. Vortices are zero intensity lines in a
three-dimensional space, at which the phase is undefined,
or singular. About these singularities, the phase has a circu-
lating or helical form [9]. Because of the analyticity of
the wavefield, the phase can only change by an integer
multiple of 2π in a circuit about the singularity [10, p. 228].
Investigations of these vortices and other singular structures
have led to a new subfield of optics known as singular
optics [10].

The most well-known beams possessing optical vortices
are the Laguerre−Gauss beams of order p, l , where p and l are
integers. In cylindrical coordinates, such a Laguerre−Gauss
beam can be expressed in the waist plane �z � 0�, without
normalization, as [11, p. 649]
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where w0 is the beam width in the waist plane, E0 is a constant,
and Ljl jp denotes the associated Laguerre polynomials. It is
worth noting that the last two terms can be combined and
expressed in Cartesian coordinates to write
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where ρ2 � �x2 � y2�, and the plus/minus sign denotes a
left-handed �l > 0� or right-handed vortex �l < 0�, respec-
tively, as demonstrated by the phase shown in Fig. 1.

Propagating fields that are naturally bandlimited in spatial
frequency can have vortices arbitrarily close together, resulting
in superoscillations. However, theoretical models of superoscil-
lations typically use complicated mathematics, such as asymp-
totics [1] or Tschebyscheff polynomials [8], which can obscure
the physics involved.

A more straightforward method using simple polynomials
to construct superoscillations was recently developed by
Chremmos and Fikioris for one-dimensional signals [12].
Their method was premised on the familiar property that
the Fourier transform of powers of real-space variables results
in differentiation in reciprocal space, i.e.,

Fig. 1. Phase of a Laguerre–Gauss beam in Eq. (2), with w0 � 1,
E0 � 1. (a) Left-handed, with l � 1, p � 0. (b) Right-handed, with
l � 3, p � 1. (c) Left-handed, with l � 5, p � 2.
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where F fg denotes the Fourier transform operator and f̃ �kx� is
the Fourier transform of f �x�. By using polynomials of x with
roots at specified locations, they were able to create superoscil-
latory functions with arbitrarily many zeros packed arbitrarily
close together. In this Letter, we extend this technique to two-
dimensional fields and show that, in addition to making super-
oscillatory fields, it is also ideal for creation of arbitrary vortex
arrangements in a given plane.

We begin with a bandlimited two-dimensional function in
reciprocal space, f̃ �kx; ky�, which has a corresponding real-
space function f �x; y�, given by the inverse Fourier transform

f �x; y� � 1
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where the limits of integration −kL and�kL are the band limits
of our field. Let us multiply this real-space function f �x; y�
by an N th-order polynomial h�z̄�, where z̄ ≡ x � iy. This
polynomial is written as

h�z̄� �
XN
n�0

anz̄n; (5)

where an are real constants. This yields a new function g�x; y� of
the form

g�x; y� � h�z̄�f �x; y�: (6)

This real-space function will have the same band limits as
f �x; y�, as shown by its Fourier transform,

g̃�kx; ky� �
XN
n�0

anin�∂kx � i∂ky �nf̃ �kx; ky�; (7)

where ∂kx and ∂ky denote partial differentiation with respect to
kx and ky, respectively. Since f̃ �kx; ky� is zero outside its band
limits, the derivatives and constants an do not cause g̃�kx; ky� to
have greater bandwidth than f̃ �kx; ky�. For g̃�kx; ky� to avoid
being singular (in the sense of delta distributions), however, the
first N − 1 derivatives of f̃ �kx; ky� must be continuous [12].
This is required because each term of power n in the polyno-
mial in g�x; y� becomes a derivative of order n in the reciprocal
space g̃�kx; ky�. Equation (3) showed this behavior for a real-
space variable in one dimension.

If h�z̄� is chosen such that its zeros are closer together than
the zeros of the fastest-oscillating component of f �x; y�, the
resulting g�x; y� will be superoscillatory in the region of those
zeros. In other words, by choosing h�z̄� with roots at specified
locations in the field g�x; y�, we can put zeros at arbitrary lo-
cations which, if they are close enough together, can result
in superoscillations. In addition, since g�x; y� has the x � iy
dependence of a vortex like Eq. (2) at these points, those points
are optical vortices as well.

We note that this method could be physically implemented
using a spatial light modulator (SLM) and a thin lens in a 2f
focusing configuration, where f refers to the focal length of
the lens. If the SLM is placed at the front focal plane of the
lens and displays the reciprocal space field g̃�kx; ky�, then
the image formed at the rear focal plane should correspond

to the real-space field g�x; y�, since the two focal points are
related via Fourier transform [13, p. 87].

To demonstrate the technique, we considered two choices
for f̃ �kx; ky�: the first we call circular, f̃ circ�kx; ky�, and the
second we call rectangular, f̃ rect�kx; ky�. The functions are
defined below:
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In Eqs. (8) and (9), we define our band limits such that
f̃ circ�kx; ky� is nonzero only for jkj < kL, and f̃ rect�kx; ky� is
nonzero only for jkx j < kL and jkyj < kL. The functions
f̃ circ�kx; ky� and f̃ rect�kx; ky� are so named because of their re-
spective circular and rectangular symmetries about the origin.

For the polynomial h�z̄�, we chose one for each f̃ �kx; ky�.
With f̃ circ�kx; ky�, we used

hcirc�z̄� � z̄5 −
5

4
z̄3 � 1

4
z̄; (10)

which has roots at z̄ � 0;�0.5, and �1. With f̃ rect�kx; ky�,
we used

hrect�z̄� �
Y5
n�0

Cnfz̄ − i exp�iπ�2n� 1�∕6�g; (11)

which has roots forming a regular hexagon on the unit circle.
Here, C is a complex conjugation operator. We use this operator
to alternate the handedness of adjacent vortices.

The field g�x; y� in the rear focal plane can be evaluated in
two ways. The simplest is to use Eq. (4) to directly calculate
f �x; y�, then multiply it by the appropriate polynomial h�z̄�.
For the rectangular case, f rect�x; y� can be evaluated numeri-
cally by discretizing Eq. (4) or, alternatively, it can be evaluated
analytically in the form
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where βm�x� ≡ �6 − 2m�π∕2� xkL, and similarly for βj�y�.
We used both ways, and the root-mean-square difference be-
tween the resulting analytical jg rectj and the numerical jg rectj
was less than 1.1 × 10−11% of the mean value of jg rectj. The
circular case does not have an analytical form to compare
against.

In the SLM-based system mentioned earlier, however, the
field g�x; y� would be determined directly from the Fourier
transform of g̃�kx; ky�, and g�x; y� would be necessarily discrete
due to the finite resolution of the SLM. It could not immedi-
ately be discounted that the superoscillations in the rear focal
plane might be lost in the discretization of g�x; y�. Therefore,
we also evaluated g�x; y� by direct Fourier transform of
g̃�kx; ky� to compare with the first method of calculation.
Due to the complexity of the derivatives in Eq. (7), we only
did this comparison for a rectangular case with three zeros,
located at z̄ � −1; 0; 1. The root-mean-square difference be-
tween the normalized jg rectj calculated by the two methods
was less than 1.8 × 10−8% of the mean of jg rectj, and the super-
oscillatory zeros were present in both cases.
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All results shown in this Letter come from the first method
of calculation, by discretizing Eq. (4), with 1001 points along
each of the kx and ky axes. The calculations were done in the
Python programming language using the tools in Refs. [14–17].

The resulting superoscillations and optical vortices for the
circular case are depicted in Fig. 2. Figure 2(a) shows the nor-
malized magnitude of gcirc, which roughly corresponds to the
intensity, jgcircj2. It has a dark center surrounded by alternating
bright and dark rings. Figure 2(b) shows the central dark spot
of Fig. 2(a). The magnitude has been normalized to the maxi-
mum magnitude in Fig. 2(a) and plotted on a logarithmic scale.
As expected, zeros can be seen at z̄ � 0;�0.5, and �1, the
roots of Eq. (10). The reciprocal space function f̃ circ�kx; ky�
is bandlimited by�kL, and kL � 1 here, so we would typically
expect no oscillations with a period λmin less than 2π. However,
since we have five zeros on a line from −1 to 1, which roughly
corresponds to a period of 1, the field is superoscillatory along
the line connecting the zeros. The magnitude of the field in
the area of the superoscillations is about five orders of magni-
tude lower than the field in the circular region near it. This sort
of behavior is to be expected, since the superoscillatory region
of a field must be exponentially weaker than the nearby field
[1]. The presence of optical vortices can be confirmed by
examining the phase of the beam in Figs. 2(c) and 2(d).
Figure 2(c) shows the phase of the field in Fig. 2(a). It has
a similar pattern to the l � 5, p � 2 Laguerre−Gauss beam in
Fig. 1(c). We can see that it has a discontinuity of π across the
dark rings in Fig. 2(a) and that it undergoes five full 2π cycles
about the central region, corresponding to the five roots of
Eq. (10). These cycles are shown most clearly in Fig. 2(d),

which shows the phase of the zoomed-in region of Fig. 2(b).
The phase makes a full 2π rotation about each of the roots of
Eq. (10), confirming that these points are optical vortices.

The superoscillatory behavior of g circ can be further shown
by considering Fig. 3, which shows the x-axis of jg circj and a
sinusoid of the expected shortest wavelength, which is 2π.
It is clear that the function g circ undergoes oscillations more
rapid than those of the sinusoid.

Fig. 2. Magnitude and phase plots for the circular case, with
kL � 1. (a) Normalized magnitude of gcirc. (b) Magnitude of gcirc,
zoomed in to show the zeros at the roots of Eq. (10) and normalized
to (a). Note the logarithmic scale. (c) Phase of the field in (a). (d) Phase
of the field in (b).

Fig. 3. x-axis of jg circj, with kL � 1, plotted with a sinusoid of the
minimum wavelength associated with this bandwidth. The thick black
line is the wavelength of the sinusoid. Note the logarithmic scale.

Fig. 4. Magnitude and phase plots for the rectangular case, with
kL � 1. (a) Normalized absolute value of g rect. (b) Magnitude of
g rect, zoomed in to show the zeros at the roots of Eq. (11) and nor-
malized to (a). Note the logarithmic scale. (c) Phase of the field in (a).
(d) Phase of the field in (b).
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We see similar results for the rectangular case shown in
Fig. 4. Figure 4(a) shows the normalized magnitude of g rect,
which consists of a dark central circle surrounded by a bright
square. Figure 4(b) shows the magnitude of the dark region,
scaled and plotted in the same way as Fig. 2(b). It can be seen
that the field has zeros forming a regular hexagon on the unit
circle, corresponding to the roots of Eq. (11). The phase of the
field is shown in Figs. 4(c) and 4(d). Figure 4(c) shows the
phase of the field in Fig. 4(a). In Fig. 4(d), we again see vortices
at the roots of Eq. (11), confirming our ability to place vortices
wherever we wish in the field. Additionally, it can be seen that
the vortices are alternately right-handed and left-handed due to
the complex conjugation we employed in hrect�z̄�.

An earlier method by Dennis [18] used phase perturbations
of a high-order vortex field to produce lines and polygons of vor-
tices similar to those of Figs. 2 and 4, and later was shown to
produce superoscillations [19], but the method presented here
has several distinct advantages. First, our polynomial method
can produce vortices of any handedness in any arrangement,
whereas the perturbation method can only make arrangements
of the same handedness. Second, our method can place high-
order vortices (of an order greater than unity) at any position
in the observation plane. Third, our method has no restrictions
on the placement of vortices, and is not restricted to the line and
polygon configurations shown earlier. Finally, the inclination of
the vortices can be arbitrarily chosen in our `method, by replac-
ing the x � iy dependence with an ax � iy dependence. Doing

so would produce mixed edge/screw vortices for which the vor-
tex line is at an angle to the z-axis [20, p. 102].

Most of these advantages can be seen in Fig. 5, which
depicts a field of 76 vortices arranged to spell “UNCC.” The
vortices in each letter alternate between left-handed and right-
handed. The vortices in the second “C” are all second order,
except for the endpoints. This field was made using f̃ rect�kx; ky�
from Eq. (9), except that the exponent used was 120 rather
than 6, which is more than large enough to ensure that the
required derivatives exist. The polynomial h�z� was made by
choosing vortex locations on a grid and making these locations
the roots z̄r of the polynomial. The polynomial was finally
constructed by multiplying terms �z̄ − z̄r� together, applying
conjugation where a left-handed vortex was desired and squar-
ing where a second-order vortex was desired.

In conclusion, we have demonstrated a method that can be
used to place optical vortices of arbitrary sign and order at ar-
bitrary locations within a field, given that the reciprocal space
function f̃ �kx; ky� has sufficient derivatives for the number
of vortices. We have used here functions f̃ �kx; ky� which
are continuously differentiable to order N − 1 and polynomials
of order N . The result is that g̃�kx; ky� is discontinuous at the
edge of the domain. We may also use functions which are
more continuous, which should result in less strong secondary
oscillations of g�x; y�. It is to be noted that earlier work by
Abramochkin and Volostnikov [21] used a related strategy to
that described here to produce beams with geometric-shaped
intensity patterns; that work, however, did not stress the
positioning of vortices.
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Fig. 5. Magnitude and phase plots for a field with vortices arranged
to spell “UNCC.” Each of the letters has alternating right-handed/
left-handed vortices. The vortices in the second “C” are second order,
with the exception of the end points. (a) Normalized magnitude of the
field. To help make the vortices visible, the color map was capped at a
maximum of 1 × 10−10. (b) Phase of the field.
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