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It is shown that a scatterer can be designed to be direction-
ally invisible for an incident field composed of a given sum
of plane waves. These scatterers are invisible only when all
plane waves are present with the given amplitudes and
directions of incidence, which suggests a new type of
“switchable” invisibility. Such objects could find applica-
tion in optical devices such as couplers, switches, and opti-
cal position sensors. It is also demonstrated that the
designed scatterers have balanced gain-loss profiles that
are more general than most PT -symmetric objects
considered so far. © 2017 Optical Society of America

OCIS codes: (290.5839) Scattering, invisibility; (290.5825) Scattering

theory; (200.4660) Optical logic.
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Invisibility has captured the imagination of scientists and
fiction writers for ages, but it is only in the last hundred years
that it has evolved into a serious possibility. The first hints of
invisible objects appeared in pre-quantum theory, and grew out
of attempts to explain how the electrons in atoms can accelerate
but not radiate power [1,2]. These attempts resulted in the
characterization of classical charge-current distributions that
do not radiate, known as nonradiating sources [3,4], and these
sources were found to be crucial in understanding the unique-
ness of the inverse source problem [5].

True invisibility was similarly explored in the context of in-
verse scattering problems, and it was shown that it is possible to
create objects that are directionally invisible for multiple direc-
tions of illumination, at least under weak scattering conditions
[6]. This work was largely ignored until the possibility of omni-
directional invisibility cloaks was introduced in 2006 [7,8]. Such
perfect cloaks require extreme material properties, and there has
been a general trend in more recent work toward trading off per-
fection for material simplicity, for instance, in the use of carpet
cloaks [9] or objects with directional invisibility [10,11].

However, it has recently been shown that passive cloaks,
which do not possess gain or loss, are inherently bandlimited
[12]. Because of this, there has been increasing interest in using
active media to construct invisible devices, such as done in [13].
Uni-directionally transparent layered structures have emerged
employing parity-time (PT ) symmetry as a design strategy
[14,15]. With few exceptions [16–18], however, these devices
have been one-dimensional. It has been shown recently [19],

though, that it is possible to design two- or three-dimensional
directionally invisible gain-loss scatterers by using ideas from
early nonradiating source theory; these scatterers can not only
be designed to be PT -symmetric but also to have no symmetry
in their refractive index structure whatsoever [20].

In this Letter, we generalize this method of directional invis-
ibility to theoretically construct objects that are invisible only when
simultaneously illuminated by multiple plane waves in given di-
rections. From this, it is suggested that such devices could be used
to design novel couplers, switches, and other optical sensors.

Consider an object of refractive index n�r� bounded by a
finite surface S and volume V , illuminated by a scalar mono-
chromatic incident field U �i��r�, which may consist of one or
more plane waves Un�r� of different amplitudes:

U �i��r� �
XN
n�1

Un�r�; (1)

where Un�r� is defined by

Un�r� � Aneikŝn·r; (2)

with An representing the amplitude and ŝn the direction of the
nth plane wave, and k � ω

c � 2π
λ , ω the angular frequency, λ

the wavelength, and c representing the vacuum speed of light.
The total field U �r� � U �i��r� � U �s��r�, where U �i��r� and
U �s��r� are the incident and scattered fields, respectively, sat-
isfies the Helmholtz equation with an inhomogeneous wave
number:

�∇2 � n2�r�k2�U �r� � 0: (3)

Introducing the scattering potential F�r� of the form:

F �r� � k2

4π
�n2�r� − 1�; (4)

it is possible to write an inhomogeneous wave equation for the
scattered field [21]:

�∇2 � k2�U �s��r� � −4πF �r�U �r�: (5)

As the scattered field is present on both sides of Eq. (5), it is
not possible to solve this equation analytically. However, we
may use it to construct a nonscattering object by following
the procedure first presented in [19]. First, we write

U �s��r� � U �i��r�U �loc��r�; (6)

where U �loc��r� is the local scattered field of the inhomogeneous
scatterer; it is the scattered field with the oscillations of the
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incident field removed [19]. Next, we apply techniques prom-
ulgated to create nonradiating sources [2] to design invisible ob-
jects. To this end, the boundary conditions typically employed
for nonradiating sources [22] are applied to the local field
U �loc��r� that defines the invisible object, namely,

U �loc��r�jS � 0; and
∂
∂n

U �loc��r�j
S
� 0; (7)

where ∂
∂n represents the derivative normal to the surface S,

which forms the boundary of the scatterer. The scattered field
U �loc��r� � 0 outside the scatterer. Writing the total field as
U �r� � �1� U �loc��r��U �i��r�, where U �i��r� is defined by
Eq. (1), and substituting it with Eq. (6) into Eq. (5), results
in the scattering potential F �r� that produces the scattered
field, i.e.,

F �r� � −
1

4π�1� U �loc��r��

×
�
∇2U �loc��r� � 2ik

PN
n�1 Un�r�ŝn · ∇U �loc��r�PN

n�1 Un�r�

�
:

(8)
For only one incident wave (N � 1), the scattering poten-

tial is

F �r� � −
1

4π

∇2U �loc��r� � 2ikŝ1 · ∇U �loc��r�
1� U �loc��r� ; (9)

presented in [19] and explored in more detail in [20].
The general equation [Eq. (8)] for N discrete directions fa-

cilitates the design of a scatterer that is invisible for an incident
field consisting of multiple plane waves. For two incident waves
of different amplitudes, i.e., N � 2, the scattering potential is
defined by

F �r��−
1

4π�1�U �loc��r��

×
�
∇2U �loc��r��2ikŝ1 ·∇U �loc��r�

1�A2

A1
eik�ŝ2−ŝ1�·r

�2ikŝ2 ·∇U �loc��r�
1�A1

A2
eik�ŝ1−ŝ2�·r

�
;

(10)

where A1 and A2 are the amplitudes and ŝ1 and ŝ2 are the di-
rections of incidence of the two plane waves. By choosing
U �loc��r� with appropriate boundary conditions, and the am-
plitudes and directions of incidence for the plane waves, we
uniquely specify the form of F �r� with the desired invisibility
properties. For example, let us choose a circular object of radius
a with

U �loc��r� � cos2
�
πr2

2a2

�
; (11)

where r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

p
, a � 1, A1 � 1, A2 � 20, ŝ1 � x̂, and

ŝ2 � ŷ. This choice of U �loc� provides a simple example, but
any U �loc� that satisfies Eq. (7) may be chosen. The incident
field is defined by Eq. (1) with N � 2 such that

U �i��r� � A1eikŝ1·r � A2eikŝ2·r: (12)
Numerical simulations of waves interacting with this direc-

tionally nonscattering scatterer were performed using a Green’s
function method [23] for two cases. First, the fields were cal-
culated when both components of the incident field given by
Eq. (12) were present. Then the total and scattered fields were

calculated when only one of the components of the incident
field was present. The scattering potential is found by substi-
tuting Eq. (11) into Eq. (10). While the real part has a more
balanced amplitude in both the x̂ and ŷ directions, the imagi-
nary part is roughly antisymmetric along the ŷ axis and has an
amplitude range roughly twice as large as the real component
(Fig. 1). This emphasizes the roles gain and loss play in these
invisible objects. Because the local scattered field U �loc��r� was
taken to be real and symmetric, the scattering potential pos-
sesses the conjugate inversion symmetry F�r� � F⋆�−r�.
This is a very general example of PT symmetry; most examples
of PT symmetry that have been studied to date focus on struc-
tures that also have this conjugate symmetry with respect to a
single axis, i.e., F �x; y; z� � F⋆�−x; y; z�, which our structure
does not have. More generally, by choosing a U �loc�, which is
not real or symmetric, it is possible to produce structures that
do not possess any symmetry in their potential. These direc-
tional invisible objects are active gain-loss scatterers with
balanced gain and loss.

When both of the components of the incident fields are
present, the nonscattering scatterer is invisible (Fig. 2). The in-
cident fields appear undisturbed outside the scatterer [Fig. 2
(a)]. This is further confirmed in that the scattered field outside
the scatterer is identically zero [Fig. 2(b)]. However, if one of
the components of the incident field is removed, or incident
from a different direction, there is significant scattering, as
we will now illustrate. Figure 3(a) shows the scattered field
when a field is incident only in the x̂-direction. Figure 3(b)
shows the scattered field when an incident field propagates only
in the ŷ-direction. In both cases, there is a strong scattered field.
Therefore, this kind of scatterer is invisible only when both
waves are incident in their respective directions simultaneously

Fig. 1. Real (a) and imaginary (b) parts of F �r� [Eq. (10)] with
U �loc��r� [Eq. (11)] with a � 1, A1 � 1, A2 � 20, ŝ1 � x̂, and
ŝ2 � ŷ.

Fig. 2. Real parts of the U �r� (a) and U �s��r� (b) invisible to
U �i��r� [Eq. (12)] with F �r� [Eq. (10)] with a � 1, A1 � 1,
A2 � 20, ŝ1 � x̂, and ŝ2 � ŷ.
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with the proper amplitudes. Because this nonscattering
scatterer is invisible only if the incident field comprises specific
plane waves with designated directions and amplitudes, one
could imagine building an optically switchable coupler with
this device, where one field is the “pump” and the other field
is the “probe.” While the pump is held at the designed magni-
tude and direction, the probe might be varied. The device
transmits both fields perfectly only when the probe is also
set to the correct amplitude and direction.

To explore this switching effect further, we consider the
power extinguished and scattered by the object as the ampli-
tude of the probe is varied. The extinguished power P�ext� is
defined as the power removed from the incident field by the
scatterer (Chapter 2 in Ref. [24]) (and can be derived from
[21]), and is given by

P�ext� � −
1

2ik

Z
L
�U �i�⋆∇U �s� � U �s�⋆∇U �i� − c:c:� · n̂dl

(13)

and c.c. refers to the complex conjugate. The scattered power
P�sca� is defined as the total integrated power scattered by the
object (Chapter 2 in Refs. [21,24]), and is given by

P�sca� � 1

2ik

Z
L
�U �s�⋆∇U �s� − U �s�∇U �s�⋆� · n̂dl : (14)

We may also introduce the power absorbed by the object as
P�abs� [21]; it is related to P�ext� and P�sca� by

P�ext� � P�sca� � P�abs�: (15)

In the presence of gain, P�abs� may be negative, as shown by
Kerker [25]; it is therefore possible to have a gain object with
zero extinguished power but nonzero scattered power. This is
the case in which one of the incident field components is omit-
ted (Fig. 3); P�sca� ≈ 6.6 when either the x̂ or the ŷ component
was present, while P�ext� � 0.

True invisibility occurs only when P�abs� and P�ext� are simul-
taneously zero [25]. Normalized versions of these quantities are
shown in Fig. 4 as a function of the ratio A∕A2, where A is the
probe field amplitude and A2 is the value of the probe field am-
plitude at which it has been designed to be invisible. P�sca� and
P�ext� have been normalized by A2

1 � A2, which is the average
power per unit length of the incident field. It can be seen that
both quantities are simultaneously zero only when A∕A2 � 1.

To study the effect of relative phase between the incident
field components on invisibility, a phase between 0 and π∕2
was added to one of the components, and P�ext� and P�sca� were

calculated normalized by A2
1 � A2

2. All of the calculated values
were below 10%, indicating that this type of scatterer is resilient
in the presence of a relative phase change.

A scatterer can also be designed for a field with three or more
directions of incidence. For example, if N � 3 in Eq. (8), the
scattering potential is given by

F �r� � −
1

4π�1� U �loc��r�� × �∇
2U �loc��r�

� 2ikŝ1 · ∇U �loc��r�
1� A2

A1
eik�ŝ2−ŝ1�·r � A3

A1
eik�ŝ3−ŝ1�·r

� 2ikŝ2 · ∇U �loc��r�
1� A1

A2
eik�ŝ1−ŝ2�·r � A3

A2
eik�ŝ3−ŝ2�·r

� 2ikŝ3 · ∇U �loc��r�
1� A1

A3
eik�ŝ1−ŝ3�·r � A2

A3
eik�ŝ2−ŝ3�·r

�
; (16)

where A1, A2, A3 are the amplitudes and ŝ1, ŝ2, ŝ3, are the
directions of incidence of the incident field U �i��r�, given by

U �i��r� � A1eikŝ1·r � A2eikŝ2·r � A3eikŝ3·r: (17)
Two tri-directional scatterers were designed using the local

scattered field given by Eq. (11). The first one is invisible for
fields simultaneously incident in the ŝ1 � x̂, ŝ2 � ŷ, and in the
ŝ3 � x̂ − ŷ directions. The following values were used for the
incident fields: A1 � 1, A2 � 1, and A3 � 5. Again, the real
part of the scattering potential exhibits inversion symmetry,
while its imaginary part has inversion anti-symmetry
(Fig. 5). The scattered field for this tri-directionally invisible
scatterer is shown for when the incident fields are propagating
in the invisibility directions [Fig. 6(a)]. When the field in the ŷ
direction instead propagates in the −ŷ direction, the scatterer is
no longer invisible [Fig. 6(b)].

Such a scatterer can also be designed with counter-propagat-
ing pump fields. The second tri-directional nonscattering scat-
terer is invisible for fields simultaneously incident in the
ŝ1 � x̂, ŝ2 � ŷ, and in the ŝ3 � −x̂ directions with amplitudes
A1 � 1, A2 � 2, and A3 � 5. It is of note that the scattering
potential in this case has also the aforementioned inversion
symmetry. The real part of the scattered field for this tri-
directionally invisible scatterer is shown in Fig. 7(a) for the case
in which the incident fields all propagate in the invisibility di-
rection. This shows that it is possible to design directionally

Fig. 3. Real part of U �s��r� when U �i��r� is incident in either (a) x̂
or (b) ŷ, for an object invisible to U �i��r� [Eq. (12)]. F �r� [Eq. (10)]
has a � 1, A1 � 1, A2 � 20, ŝ1 � x̂, and ŝ2 � ŷ.

Fig. 4. P�ext� and P�sca� versus the ratio A∕A2. A � A2 is the value
of the probe field at which the object is invisible.
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invisible scatterers using this method with unequal amplitudes
in opposite directions. If the third incident field has ŝ3 � −x̂� ŷ
instead of its given direction, the scatterer no longer is invisible
and scatters in response to the incident field [Fig. 7(b)].

Though we have focused here on the scalar wave equation
for simplicity, the same methods may be applied to electromag-
netic waves, as was shown in [19]. For a non-magnetic material,
one uses the vector wave equation for the electric field E:

∇ × �∇ × E�s�� − k2E�s� � −4πF · E; (18)

where F is a generally anisotropic scattering potential based on
the permittivity. The same conditions for the scalar field in
Eq. (7) may be used for the electric field E to make an invisible
object.

The examples here have a scattering potential that varies
continuously in space, which in practice will be difficult to fab-
ricate. However, because Eq. (8) for the scattering potential de-
pends in a simple way upon the derivatives of the chosen local
field, it should be possible to make a more sophisticated choice
of U �loc� that will provide a simpler, even piecewise constant,
potential. The only conditions that U �loc� must satisfy are con-
tinuity of the field and its derivative throughout the volume
and Eq. (7) on the boundary, which provides much freedom.

This method could be used to design a variety of novel, di-
rectional optical devices, for example, an optically switchable,
directionally invisible, optical coupler. It is also possible to
imagine an optical lock or switch that will transmit at the right
power and direction only if all beams are present at the same
time. Such a device might also be combined with an optical
detector, designed to detect only a specific incident field com-
posed of the sum of plane waves. These kinds of devices could

also be used to improve efficiency of solar cells and thermopho-
tovoltaic cells, in which light incident in a number of directions
simultaneously will be transmitted with minimal reflection.

Since the Helmholtz equation is analogous to the time-
independent Schrödinger equation, the technique here can also
be applied to quantum mechanics by applying the boundary
conditions to the quantum wave function. This implies that
there is a broader class of quantum potentials for which the
Hamiltonian has real energy eigenvalues.
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Fig. 5. Real (a) and imaginary (b) parts of F �r� [Eq. (16)] with
U �loc��r� [Eq. (11)] with a � 1, and A1 � 1, A2 � 1, A3 � 5,
ŝ1 � x̂, ŝ2 � ŷ, and ŝ3 � x̂ − ŷ.

Fig. 6. Real part of U �s��r� with U �i��r� [Eq. (17)] and (a) ŝ2 � ŷ
(invisibility) or (b) ŝ2 � −ŷ. F �r� is given by Eq. (16) with a � 1,
A1 � 1, A2 � 1, A3 � 5, ŝ1 � x̂, ŝ2 � ŷ, and ŝ3 � x̂ − ŷ.

Fig. 7. Real part of U �s��r� for U �i��r� [Eq. (17)] and (a) ŝ3 � −x̂
(invisibility) or (b) with ŝ3 � −x̂� ŷ. F �r� [Eq. (16)] has a � 1,
A1 � 1, A2 � 2, A3 � 5, ŝ1 � x̂, ŝ2 � ŷ, and ŝ3 � −x̂.
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