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Laguë17, F. Hugo Lambert11, Flavio Lehner18,19,20, Justin S. Mankin21,7, Kaighin A. McColl22,23,

Karen A. McKinnon24, Angeline G. Pendergrass18,19, Marianne Pietschnig25,26, Luca Schmidt13,

Andrew P. Schurer3, E. Marian Scott27, David Sexton28, Steven C. Sherwood29, Lucas Vargas

Zeppetello30 and Yi Zhang31

1School of Earth & Environmental Sciences, University of St Andrews, UK

2Department of Physics, University of Oxford, UK

3School of Geosciences, University of Edinburgh, UK

4Department of Geography and Earth Sciences, University of North Carolina at Charlotte, USA

5The Fredy and Nadine Herrmann Institute of Earth Sciences, The Hebrew University, Israel

6Department of Geography, Université de Montréal, Canada
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Climate over land—where humans live and the vast majority of food is produced—is chang-1

ing rapidly, driving severe impacts through extreme heat, wildfires, drought, and flooding.2

Our ability to monitor and model this changing climate is being transformed through new3

observational systems and increasingly complex Earth System Models (ESMs). But funda-4

mental understanding of the processes governing land climate has not kept pace, weakening5

our ability to interpret and utilise data from these advanced tools. Here we argue that for6

land-climate science to accelerate forward, a new approach is needed. We advocate for a7

parallel scientific effort, one emphasising robust theories, that aims to inspire current and8

future land-climate scientists to better comprehend the processes governing land climate, its9

variability and extremes, and its sensitivity to global warming. Such an effort, we believe,10

is essential to better understand the risks people face, where they live, in an era of climate11

change.12

Knowledge of some aspects of continental climate and their responses to global warming are13

well established. For example, we broadly understand why land warms more rapidly than oceans1
14

(Fig. 1), the intensification of extreme precipitation in a warmer atmosphere2, and how surface15

runoff is influenced by loss of snowpack3. However, knowledge of many other aspects of land16

climate is underdeveloped. The “wet get wetter, dry get drier” paradigm predicts an amplification17

of wet/dry contrasts as climate warms4, 5. But this paradigm does not generally apply to land18

regions6 nor does the poleward expansion of the Hadley cells7. Adding to this list is uncertainty19

over how evapotranspiration (ET) and soil moisture8, 9—both critical for humans and ecosystems—20

will be altered by a changing climate. Knowledge of numerous other facets of land climate is21
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similarly unsettled, from basic questions of what governs its mean state, variability, and extremes,22

to how these facets might change with warming. Why are simulated land temperature changes23

more uncertain and more diverse, across space and climate models, compared to ocean regions24

(Fig. 1a,b)? Why are the tropical rainbelts broader and more mobile over land10? And how25

will land humidity evolve as climate warms11, 12? Longstanding challenges in simulating land26

climate—including the diurnal cycle of convection13—further highlight shortcomings in our basic27

understanding.28

The challenge of complexity29

The climate over land is a complex system shaped by an array of diverse factors, from local surface30

conditions including soil moisture and plants14, 15 to large-scale atmospheric circulations that con-31

nect continents to oceans through the transport of water, heat, and momentum16–18. Many of the key32

processes influencing land climate are spatially heterogeneous, difficult to simulate, and/or poorly33

observed. For example, land surface models have longstanding problems in simulating turbulent34

fluxes of heat and water19, 20, for reasons that are not well understood21. Sparse and time-limited35

observational records of important land-climate variables, including root-zone soil moisture22 and36

near-surface humidity23, further impede efforts to advance knowledge of the land-climate system.37

The role of humanity presents another challenge, with large uncertainties in modelling the influ-38

ences of land use and management on fluxes of carbon, energy, and water in the past, present, and39

future24. Confronted with such a complex system it can appear a daunting task to develop a deep,40

mechanistic, conceptual understanding of the kind we would want to read in future textbooks on41
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land climate. But as the field of climate science evolves, we argue that many of the most fascinating42

and pressing questions relate to land25.43

Given the complexity and importance of land climate, how can the research community ac-44

celerate progress? In the atmospheric and ocean sciences, notable advances are being made by in-45

creasing the spatial resolution of state-of-the-art ESMs26. But unlike in the atmosphere and oceans,46

where higher resolutions allow for explicit simulation of key processes including deep convection47

and mesoscale eddies, the case for transitioning to finer resolution models to drive new conceptual48

breakthroughs in land-climate science is less clear-cut27. Land climate is undoubtedly influenced49

by small-scale processes, so there are potential benefits to incorporating into models more sophis-50

ticated representations of, for example, hillslope hydrology28, groundwater processes29, and land51

management30. However, absent a comprehensive understanding of these processes and how to52

accurately represent them in models31, 32, it is possible that such complexity obfuscates more than53

it clarifies19. Persistent and poorly constrained deficiencies in land surface models—highlighted by54

the PLUMBER project19–21—suggest that model development alone, though necessary, is unlikely55

to answer the key questions about land climate highlighted above. Similarly, machine learning56

tools are increasingly being applied to climate science for developing ESMs33, parameterising57

surface fluxes34, and constructing statistical emulators of land models35. Indeed recent successes58

highlight the potential of machine learning to build physical insight in the atmospheric and ocean59

sciences36, 37. But it remains to be seen whether the tools of machine learning are capable of trans-60

forming scientific understanding of land climate38.61
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Figure 1: Simulated climate warming is larger and more uncertain over land. (a) Boxplots of

simulated warming averaged over land (left), ocean (centre), and globally (right) calculated using

pre-industrial control and abrupt 4xCO2 simulations performed by 45 climate models participating

in the Coupled Model Intercomparison Project Phase 639. Horizontal lines show the median model

values, boxes show the interquartile ranges, and whiskers show the full model ranges. Warming for

each model is computed as the time- and area-averaged near-surface temperature change between

the final 20 years of the pre-industrial control simulation and years 40-59 of the abrupt 4xCO2

simulation. Uncertainty across models is indicated by the red arrows and text, with the full model

range taken as a simple measure of uncertainty. (b) Multimodel-mean probability density functions

(PDFs) of area-weighted near-surface warming over land (red) and ocean (blue), normalised by the

global-mean warming in each model. The same models, simulations, and averaging periods are

used as in panel (a). The wider land PDF in panel (b) suggests larger differences in near-surface

warming, across space and models, relative to oceans.
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A renewed focus on theory62

Here we argue that for land-climate science to move forward, we must step back and reassess our63

approach. Our philosophy—borne in an era of explosive growth in model complexity and demand-64

ing simulation timetables, and shaped by a 2022 workshop at the University of St Andrews—is to65

redouble efforts to build robust physical understanding of land climate through the development of66

powerful new theories and refinement of existing conceptual frameworks. Previous work exempli-67

fies this approach, notably the development of theories and simple ‘toy’ models to understand the68

land boundary layer40, 41, land-atmosphere coupling42, 43, and moist convection over land44, 45. To69

anchor and inspire the next decade of research, we argue that now is the time to position this phi-70

losophy at the centre of land-climate science and re-balance our activities such that theory, model71

development, and observations are prioritised equally.72

Development of theory can, and should, proceed in parallel with the imperative to build73

progressively more sophisticated ESMs. Indeed the gap in climate science between theory and74

actionable information, particularly at regional scales, is typically filled by state-of-the-art mod-75

els, which are also invaluable tools for testing and refining the theories advocated for here. But76

theories that distill conceptual understanding need to be at the core of land-climate science, to en-77

able the research community to compare proposed mechanisms, understand the competing roles of78

different processes in a coupled system, and make predictions without running complex models.79

Advances in theory can have practical as well as conceptual benefits, for example making ET easier80

to estimate46, increasing confidence in model projections (for example of runoff47), and underpin-81
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ning physically-based emergent constraints to narrow uncertainties in future climate change48.82

So, what constitutes a successful theory in land-climate science? The answer depends on83

the problem being considered, but we believe a successful theory should: explain an emergent84

property of the climate system; be underpinned by robust process understanding; and provide85

clear mechanistic insights that hold across a hierarchy of numerical model complexity. Theories86

should also, where possible, be predictive and quantitative (i.e., formulated as an equation or set87

of equations). Finally, and crucially, a successful theory should be tested against and supported by88

observational data. Below we highlight three recent advances in land-climate science that showcase89

the power of theory, before outlining our view on how a renewed focus on theory is needed to90

accelerate progress in land-climate science:91

1. Land temperature and humidity changes constrained by tropical atmospheric dynam-92

ics: The role of convection and large-scale atmospheric dynamics in shaping tropical land93

temperature and humidity has been an important conceptual advance over recent decades1, 49–51.94

This framework emerged from efforts to understand why, under climate change, warming is95

stronger over land; the so-called land-ocean warming contrast49. Early explanations of this96

phenomenon were based on the surface energy budget52. Radiative forcing at the surface97

(e.g., due to increases in atmospheric CO2) are largely balanced in ocean regions by in-98

creases in evaporation, resulting in a relatively small increase in surface temperature. In99

land regions, however, which are often water-limited, radiative forcing is primarily balanced100

through increases in sensible heat and longwave fluxes, requiring a larger increase in sur-101
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face temperature relative to oceans. Though physically intuitive, using this argument to102

construct a quantitative theory for land temperature change is challenging because surface103

fluxes depend on multiple factors aside from temperature, including windspeed, soil mois-104

ture, vegetation, and the air-surface temperature and humidity disequilibriums. To build a105

theory for land temperature change based on the surface energy budget, multiple additional106

theories for how the other factors (e.g., soil moisture) respond to climate change would also107

be needed.108

An alternative framework, inspired by Joshi et al1, cuts through the complexity of land sur-109

faces to reveal a strong constraint on the bulk response of tropical land to climate change.110

Not only has this framework transformed understanding of the tropical land-ocean warm-111

ing contrast, it has also led to broader insights into large-scale atmospheric controls on112

near-surface temperature and humidity. In the tropical atmosphere, strong vertical coupling113

by convection between the boundary layer and free troposphere described by convective114

quasi-equilibrium53—together with horizontal coupling by gravity waves above the bound-115

ary layer, resulting in weak free-tropospheric temperature gradients54—imply that climatic116

changes in adiabatically conserved quantities such as moist static energy, a function of tem-117

perature and specific humidity near the surface, are tightly coupled between different regions118

and therefore approximately uniform on large scales55–57 (Fig. 2). This mechanism, a form119

of ‘downward control’ exerted by the overlying atmosphere on near-surface tropical climate,120

has important implications: Though temperature and specific humidity individually may re-121

spond differently to climate change in different regions, for example in tropical savannas122
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versus in rainforests, the combined change (encoded in the near-surface moist static energy)123

is more spatially homogeneous. Local processes, including soil moisture and aridity56, 58, are124

crucial for controlling how temperature versus humidity changes contribute to the change in125

moist static energy imposed by the atmosphere. This physical theory—developed using a126

hierarchy of numerical models and observational data—underpins advances in understand-127

ing the land-ocean warming contrast1, 59, 60, aridity and land relative humidity in a changing128

climate50, 56, 61, and extreme heat57, 62–64, and establishes a simple yet quantitative framework129

for interpreting models, observations, and the roles of local versus large-scale processes in130

shaping tropical land climate.131

2. Evapotranspiration predicted by simple theory: ET is central to regulating the water, en-132

ergy, and carbon budgets of land regions65, and affects societies and ecosystems through its133

influence on hydrology and temperature variability66. But ET is directly measured only at a134

limited number of sites67, necessitating models of various kinds to estimate ET elsewhere.135

These models are typically complex, requiring numerous poorly constrained land-surface136

parameters as inputs, and are imperfect at replicating direct measurements68. However, a137

new theory to predict present-day ET in inland continental regions using minimal input data138

provides a conceptual advance in understanding and presents an opportunity to greatly ex-139

pand the database of ET measurements across space and time46. The theory is based on the140

concept of ‘surface flux equilibrium’ (SFE), which assumes an approximate balance between141

the surface moistening and heating effects on near-surface relative humidity69. This strong142

coupling between the land surface and overlying atmosphere imprints, in the air properties,143
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information about the land-surface fluxes (i.e., the Bowen ratio) at daily to longer timescales,144

and appears to dominate alternative atmospheric mechanisms that also contribute to deter-145

mining the near-surface atmospheric state (e.g., wind-driven moisture and heat convergence).146

Specifically, the SFE theory permits relatively accurate estimates of ET knowing only the net147

radiative flux into the surface and the near-surface temperature and specific humidity46, 70,148

the latter two which reflect the Bowen ratio (Fig. 3). Importantly, these quantities are more149

widely available from weather stations than direct ET measurements. The theory reveals an150

emergent simplicity in ET46, despite the heterogeneity and complexity of land surfaces.151

3. Leaf physiology incorporated into classical runoff theories: Runoff from land supplies152

almost all the water used by humans. In contrast to the time-varying ET estimated by SFE153

and described above, long-term mean runoff and ET fluxes have long been predicted and154

understood using the simple theory of Budyko71, in which the fraction of precipitation that155

becomes runoff decreases as the ratio of atmospheric evaporative demand to precipitation156

increases. Budyko quantified evaporative demand using surface net radiation only, but more157

comprehensive evaporative theories72 generally also include a well-understood positive tem-158

perature dependence73. When these more modern methods are used in the Budyko theory,159

they predict substantial increases in evaporative demand with global warming and systematic160

decreases in natural runoff74 (i.e., the component of runoff controlled by natural processes161

rather than by human activities), which would imply water shortages. Yet such widespread162

runoff declines are neither observed75 nor simulated by more comprehensive models74, lead-163

ing to the impression of a theoretical deficiency. Yang et al76 recently resolved this tension164
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by incorporating the ET-reducing closure of leaf stomata by CO2 into a revised theoreti-165

cal framework (Fig. 4). The inclusion of this important and well-studied process brought166

the Budyko-predicted trends in natural runoff much closer to observations and state-of-the-167

art ESMs, and clarified our understanding of the drivers of runoff in a changing climate.168

Looking forward, incorporating human activities (e.g., water management) and the effects169

of wildfire77 into runoff theories is a priority for future work.170

Opportunities for progress171

A greater emphasis on developing theories for land climate and its changes is essential for building172

confidence in future projections, identifying directions for model improvement78, validating in173

situ and remote sensing data, and interpreting the dynamics of key processes as new models and174

observational systems come online. The examples highlighted above demonstrate the potential for175

theory to further fundamental understanding of land climate. But the next set of advances is now176

needed. Below we present three areas of land-climate science primed for theory to provide new177

insights:178

1. Atmospheric circulation and land: The atmospheric circulation strongly shapes the land179

climate, from extreme temperatures79 to the regional water cycle80. However, much of our180

understanding of the atmospheric circulation and its sensitivity to climate change has been181

developed using aquaplanet models without land surfaces81, 82. Over recent years, focus has182

begun to shift towards incorporating land into conceptual frameworks for the atmospheric183
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Figure 2: Schematic illustrating how convection and gravity waves in the tropical atmosphere spa-

tially homogenise climatic changes in near-surface moist static energy. The development of this

large-scale atmospheric constraint on tropical land climate has been an important conceptual ad-

vance over recent years. Here and in Figures 3 and 4, the title maps highlight where the mechanism

is broadly expected to be applicable.
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Figure 3: Schematic highlighting how, following recent theoretical developments, inland ET can

be predicted as a simple function of near-surface temperature and humidity along with the net

radiative flux into the surface. Note that the grey arrows represent the series of inferences used

by the SFE-based theory to make estimates of ET46, whereas the blue and orange arrows denote,

respectively, the turbulent fluxes of heat and water coupling the surface to the near-surface air and

the radiative energy fluxes.
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Figure 4: Schematic depicting the competing effects of temperature versus CO2 on ET from leaves

and on river runoff. The recent incorporation of the CO2 effect into classical theories has clarified

understanding of runoff in a changing climate.
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state and circulation83–85. But numerous basic questions persist, including: Why is the tropi-184

cal rainbelt wider over continents10? How can ingredients of the land surface be incorporated185

into modern theories for monsoons86? Why is the poleward expansion of the atmospheric186

circulation under global warming much weaker over land7? How will blocks, often the cause187

of extreme weather over land, change with warming87? And what processes control updraft188

velocities—and hence influence extreme precipitation—over land 2? These important ques-189

tions are ready to be tackled with novel theories.190

2. Water and land: Beyond a broad tendency for mean relative humidity over land to decrease191

with warming50, 61, 88, basic properties of the land water cycle and its response to climate192

change remain unexplained. For example, what are the mechanisms determining the spatial193

and temporal distribution of soil moisture in the current climate89, 90? Why do climate mod-194

els project drier surface soils in most regions9? And why do future trajectories for surface195

and column soil moisture differ91? Detailed understanding of near-surface humidity over196

land is another priority11, 12, given the strong coupling to trends in extreme temperatures64, 92,197

extreme precipitation93, and runoff94. The coupling between plants and water has major198

implications for drought and terrestrial ecosystems, yet its response to climate change is199

highly uncertain95. For example, the effects of plant changes on runoff beyond the simple200

CO2-stomatal dependence76 are likely very large96 but poorly understood. Finally the phe-201

nomenon of ‘flash droughts’, whose dynamics and predictability are only beginning to be202

explored97, is an emerging topic where creative new theories are needed.203

3. Carbon and land: Carbon uptake and release by terrestrial ecosystems both affects and re-204
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sponds to climate variability and long-term change. The field of carbon-water-climate feed-205

backs is already rich with examples of simple concepts, theories, and emergent constraints98–100,206

providing a way to synthesise or contrast the behaviours emerging from complex ESMs101.207

The carbon-concentration and carbon-climate feedback parameters, for example, encapsu-208

late the overall response of land carbon stocks to changes in atmospheric CO2 and to global209

warming, respectively102. This global-scale conceptual framework can be used to diagnose210

and compare complex simulations103, but is also transferable to climate emulators or models211

of reduced complexity104. However, similarly simple and adaptable concepts are lacking in212

other areas of carbon cycle research. There is, for instance, large uncertainty on the extent to213

which tipping points at regional scales could impact some of the world’s largest carbon pools,214

like permafrost carbon, the Amazon rainforest ecosystem, and global forests105–109. To some215

extent this is because we lack theories, metrics, and frameworks to explain and reconcile the216

contradicting results obtained from different models and approaches. However, the existing217

literature on dynamical systems theory is rich with concepts that may be transferable to un-218

derstand potential tipping points in the carbon cycle if they can be adequately constrained by219

observations, similar to what has been done to study transitions between stable system states220

or attractors in ecology and population dynamics110, 111.221

Outlook222

To discover, test, and refine the powerful theories for land climate advocated for in this perspective,223

and to maximise benefits for the wider climate community, technical tools and scientific talent are224
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needed. On the tools side, we have at our disposal a range of models spanning idealised112, 113 to225

state-of-the-art ESMs39, alongside the emerging generation of ‘global storm resolving’ models26
226

and flexible, process-based hydrologic models114. This model hierarchy is well positioned for227

building new understanding of land climate, and initiatives like ESMvalTool115 are enabling more228

straightforward benchmarking of new theories against ESMs. However, a lack of observations229

presents a major challenge116: Despite recent progress, for example in remote sensing of surface230

soil moisture117, we simply do not have long-term datasets with wide spatial coverage for many231

important land-climate quantities, including root-zone soil moisture and ET. Thus, to parallel the232

development of models and efforts to construct theories for land climate, new instrumental ob-233

servations of essential land surface fluxes and reservoirs are required. Opportunities to further234

leverage existing observational datasets, with the goal of improving models and testing theories,235

should also be exploited. Beyond observational uncertainty, whenever we ground new theory in236

observations we also have to contend with the complicating influence of internal climate variabil-237

ity. Separating the forced response from internal variability at regional scales is still challenging238

and can harbour surprises that can influence our theories118. Empirical-statistical methods to iso-239

late the forced response, and new theory on internal variability itself, will thus need to accompany240

our endeavour to refine understanding of land climate and its changes with warming.241

On the talent side, to tackle the important questions in land-climate science we need to con-242

tinually inspire, recruit, and resource diverse cohorts of researchers from a range of primary disci-243

plines spanning hydrology, ecology, atmospheric science, physics, mathematics, computer science,244

and beyond. Engaging scientists from the broader climate community—those working primar-245
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ily on atmospheric dynamics, for example—also has the potential to bring new ideas and drive246

progress in land-climate science. Through this perspective, alongside a series of workshops and247

summer schools we aim to coordinate over coming years, our goal is to engage these current and248

future generations of researchers—as well as major funding bodies and established land-focused249

initiatives (e.g., iLEAPS and the GEWEX GLASS Panel)—in our vision to place theory at the core250

of land-climate science.251

State-of-the-art models, observational systems, and machine learning are transforming our252

ability to simulate, monitor, and emulate many aspects of land climate. But our scientific under-253

standing has not kept pace, and we now lack robust theories to comprehend the rich complexity254

being revealed by these advanced tools. Now is the time to change course and underpin models,255

observations, and machine-learning techniques with new theories so that we maintain and advance256

the deep, mechanistic understanding of land climate needed to meet the challenges of an uncertain257

future.258
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