Troutman Group Publications
(16) Reid, A.J., Erickson, K.M., Hazel, J.M., Lukose, V., Troutman, J.M. (2023) Chemoenzymatic Preparation of a Campylobacter jejuni Lipid-Linked Heptasaccharide on an Azide-Linked Polyisoprenoid. ACS Omega 8, (17), 15790-15798
(15) Scarbrough, B.A., Eade, C.R., Reid, A.J.,, Williams, T.C. Troutman, J.M. (2021) Lipopolysaccharide is a 4-aminoarabinose donor to exogenous polyisoprenyl phosphates through the reverse reaction of the enzyme ArnT. ACS Omega 6(39) 25729-25741.
(14) Reid, A.J., Jones K.J., Eade, C.R., Jorgenson, M.A., Troutman, J.M. (2021) Tracking colanic acid repeat unit formation from stepwise biosynthesis inactivation in E. coli.. Biochemistry 60 (27) 2221-2230.
(13) Eade, C.R., Wallen, T.W. , Gates, C.E. , Oliverio, C.L. , Scarbrough, B.A. , Reid, A.J. , Jorgenson, M.A., Young, K. D., Troutman, J.M. (2021) Making the enterobacterial common antigen glycan and measuring its substrate sequestration. ACS Chemical Biology 16(4)691-700.
(12) Bosire, E.M., Eade, C.R., Schiltz, C.J., Reid, A.J., Troutman, J.M., Chappie, J.S., Altier, C. (2020) Diffusible signal factors act through AraC-type transcriptional regulators as chemical cues to repress virulence of enteric pathogens. Infection and Immunity 88(10) e00226-20
(11) Reid, A.J., Scarbrough, B., Williams, T.C., Gates, C.E., Eade, C.R., Troutman, J.M. (2020) General utilization of fluorescent polyisoprenoids with sugar selective phosphoglycosyltransferases. Biochemistry (59)4
(10) Scott, P.M., Erickson, K.M., Troutman, J.M. (2019) Identification of the functional roles of six key proteins in the biosynthesis of enterobacteriaceae colanic acid. Biochemistry 58(13)
(9) Hurst, A.N., Scarbrough, B., Saleh, R., Hovey, J., Ari, F., Goyal, S., Chi, R.J., Troutman, J.M., Vivero-Escoto, J.L. (2019) Influence of cationic meso-substituted porphyrins on the antimicrobial photodynamic efficacy and cell membrane interaction in Escherichia coli. Int. J. Mol. Sci. 20(1)
(8) MacCain, W.J., Kannan S., Jameel, D.Z., Troutman. J.M., Young, K.D. (2018) A defective undecaprenyl pyrophosphate synthase induces growth and morphological defects that are suppressed by mutations in the isoprenoid pathway of Escherichia coli. J. Bacteriology 200(18)
(7) Sharma, S., Erickson, K.M., Troutman, J.M. (2017) Complete Tetrasaccharide Repeat Unit Biosynthesis of the Immunomodulatory Bacteroides fragilis Capsular Polysaccharide A. ACS Chemical Biology 12, 92-101
(6) Troutman, J.M., Erickson, K.M., Scott, P.M., Hazel, J.M., Martinez, C.D., Dodbele, S. (2015) Tuning the Production of Variable Length, Fluorescent Polyisoprenoids Using Surfactant-Controlled Enzymatic Synthesis. Biochemistry 54, 2817-27.
(5) Dodbele, S., Martinez, C.D., Troutman, J.M. (2014) Species differences in alternative substrate utilization by the anti-bacterial target Undecaprenyl Pyrophosphate Synthase. Biochemistry 53, 5042-50.
(4) Troutman, J.M., Sharma, S., Erickson, K.M., Martinez, C.D. (2014) Functional Identification of a galactosyltransferase critical to Bacteroides fragilis Capsular Polysaccharide A biosynthesis. Carbohydrate Research, 395, 19-28.
(3) Mostafavi, A.Z., Lujan, D.K., Erickson, K.M., Martinez, C.D., Troutman, J.M. (2013) Fluorescent probes for investigation of isoprenoid configuration and size discrimination by bactoprenol-utilizing enzymes. Bioorg Med Chem, 21, 5428-35.
(2) Mostafavi, A.Z., Troutman, J.M. (2013) Biosynthetic assembly of the Bacteroides fragilis capsular polysaccharide A precursor bactoprenyl diphosphate-linked acetamido-4-amino-6-deoxy galactopyranose. Biochemistry, 53, 1939-1949.
(1) Lujan, D.K., Stanziale, J.A., Mostafavi, A.Z., Sharma, S. Troutman, J.M. (2012) Chemoenzymatic synthesis of an isoprenoid phosphate tool for the analysis of complex bacterial oligosaccharide biosynthesis.Carbohydrate Research 359, 44-53.
Troutman Graduate and Post-Doc Publications
(12) Subramanian, T., Pais, J.E., Liu, S., Troutman J.M., Subramanian, K.L., Fierke, C.A., Spielmann, H.P. (2012)Farnesyl diphosphate analogues with aryl moieties are efficient alternative substrates for protein farnesyltransferase.Biochemistry 51, 8307-19.
(11) Morrison, J.P., Troutman, J.M., Imperiali B. (2010) Development of a multicomponent kinetic assay of the early enzymes in the Campylobacter jejuni N-linked glycosylation pathway. Bioorg Med Chem 18, 8167-71.
(10) Adams, V.R., Deremer, D.L., Stevich, B., Mattingly, C.A., Gallt, B., Subramanian, T., Troutman, J.M., Spielmann, H.P. (2010) Anticancer activity of novel unnatural synthetic isoprenoids. Anticancer Research 30, 2505-12.
(9)Troutman, J.M., Imperiali, B. (2009) Campylobacter jejuni PglH is a Single Active Site Processive Polymerase that Utilizes Product Inhibition to Limit Sequential Glycosyl Transfer Reactions. Biochemistry 48, 2807-2816.
(8) Subramanian, T., Liu, S., Troutman, J.M., Andres, D.A., Spielmann H.P. (2008) Protein farnesyltransferase catalyzed isoprenoid transfer to peptide depends on lipid size and shape not hydrophobicity. Chembiochem 9, 2872-82.
(7) Troutman, J. M., Subramanian, T., Andres, D. A., and Spielmann, H. P. (2007) Selective modification of CaaX peptides with ortho-substituted anilinogeranyl lipids by protein farnesyl transferase: competitive substrates and potent inhibitors from a library of farnesyl diphosphate analogues. Biochemistry 46, 11310-21.
(6) Troutman, J. M., Andres, D. A., and Spielmann, H. P. (2007) Protein farnesyl transferase target selectivity is dependent upon peptide stimulated product release. Biochemistry 46, 11299-309.
(5) Roberts, M. J., Troutman, J. M., Chehade, K. A., Cha, H. C., Kao, J. P., Huang, X., Zhan, C. G., Peterson, Y. K., Subramanian, T., Kamalakkannan, S., Andres, D. A., and Spielmann, H. P. (2006) Hydrophilic Anilinogeranyl Diphosphate Prenyl Analogues Are Ras Function Inhibitors. Biochemistry 45, 15862-15872.
(4)Troutman, J. M., Roberts, M. J., Andres, D. A., and Spielmann, H. P. (2005) Tools to analyze protein farnesylation in cells. Bioconjug Chem 16, 1209-17.
(3) Subramanian, T., Wang, Z., Troutman, J. M., Andres, D. A., and Spielmann, H. P. (2005) Directed library of anilinogeranyl analogues of farnesyl diphosphate via mixed solid- and solution-phase synthesis. Org Lett 7, 2109-12.
(2)Troutman, J. M., Chehade, K. A., Kiegiel, K., Andres, D. A., and Spielmann, H. P. (2004) Synthesis of acyloxymethyl ester prodrugs of the transferable protein farnesyl transferase substrate farnesyl methylenediphosphonate. Bioorg Med Chem Lett 14, 4979-82.
(1) Kelly, M. A., Chellgren, B. W., Rucker, A. L., Troutman, J. M., Fried, M. G., Miller, A. F., and Creamer, T. P. (2001) Host-guest study of left-handed polyproline II helix formation. Biochemistry 40, 14376-83.