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ABSTRACT

This study evaluates a method for estimating the cloud-to-ground (CG) lightning flash rate from mi-

crowave remote sensing data. Defense Meteorological Satellite Program satellites have been in operation

since 1987 and include global-viewing microwave sensors that capture thunderstorms as brightness tem-

perature depressions. The National Lightning Detection Network (NLDN) has monitored CG lightning in

theUnited States since 1997. This study investigates the relationship between CG lightning andmicrowave

brightness temperature fields for the contiguous United States from April to September for the years

2005–12. The findings suggest that an exponential function, empirically fit to the NLDN and SSM/I data,

provides lightning count measurements that agree to within 60%–70% with NLDN lightning, but with

substantial misses and false alarms in the predictions. The discrepancies seem to be attributable to re-

gional differences in thunderstorm characteristics that require a detailed study at smaller spatial scales

to truly resolve, but snow at higher elevations also produces some anomalous microwave temperature

depressions similar to those of thunderstorms. The results for the contiguous United States in this study

are a step toward potentially using SSM/I data to estimate CG lightning around the world, although the

sensitivity of the results to regional differences related to meteorological regimes would need

further study.

1. Introduction

Lightning is a phenomenon that connects weather,

climate, and society. There are many known impacts and

hazards associated with lightning that influence humans,

ecosystems, and atmospheric chemistry. Lightning-

induced wildfires have transformative effects on local

ecosystems (Flannigan et al. 2013; Giglio et al. 2006;

Littell et al. 2009; Stocks et al. 2002; Westerling et al.

2006), and the extremely high temperature associated

with lightning also produces nitrogen-containing gases

that are important in air quality and other issues related

to atmospheric chemistry (Price et al. 1997). More fun-

damentally, an average of 51 lightning-related fatalities

per year in the United States for the last 30 years—more

deaths per year than are caused by hurricanes over that

same period—make lightning a serious weather-related

threat (NOAA 2014). Monitoring and understanding

the patterns of lightning are the first steps to un-

derstanding how this phenomenon plays a role in human

and natural environments.

Storm total lightning comprises both intracloud (IC)

and cloud-to-ground (CG) lightning. The IC-to-CG ratio

varies (Medici et al. 2015) as a function of latitude

(Prentice and Mackerras 1977), elevation (Boccippio

et al. 2001), and meteorological factors (Carey and

Rutledge 2003; MacGorman et al. 1989; Schultz et al.

2011;Williams et al. 1999). On average, IC is often two to

five times more common than CG lightning (Boccippio

et al. 2001). Large-scale observations of total lightning

were captured from 1998 to 2015 by the Lightning Im-

aging Sensor (LIS) on the Tropical Rainfall Measuring

Mission (TRMM) satellite, which observed latitudes be-

tween 368N and 368S (Cecil et al. 2015). Prior to LIS,

global total lightning observations were recorded from

Corresponding author address: Brian I. Magi, Dept. of Geogra-

phy and Earth Sciences, University of North Carolina at Charlotte,

9201 University City Blvd., Charlotte, NC 28223.

E-mail: brian.magi@uncc.edu

SEPTEMBER 2016 MAG I ET AL . 2021

DOI: 10.1175/JAMC-D-15-0306.1

� 2016 American Meteorological Society

mailto:brian.magi@uncc.edu


1995 to 2000 by theOptical TransientDetector (OTD) on

the Microlab-1 satellite (Christian et al. 2003). A data

product that combines LIS and OTD data shows that the

mean global lightning flash rate ranges from35 flashes s21

in February to 60 flashes s21 in August (Cecil et al. 2014).

While there is over a decade of TRMMLIS data, TRMM

is limited to the tropics and subtropics, and while OTD

had global coverage, it was only active between 1995 and

2000 (Cecil et al. 2014; Christian et al. 2003). The high

latitudes in both hemispheres have had no satellite ob-

servations since 2000.

Lightning in a thunderstorm develops as a result of

charge exchange from collisions that occur between ice

crystals, supercooled water, and graupel in the mixed-

phase region of the cloud, and gravitational sorting of

these differently charged particles within the cloud. The

charging mechanism and the subsequent lightning flash

rate associated with any storm is related to the product

of the flux of upward- and downward-moving ice mass

within the storm (Blyth et al. 2001; Deierling et al. 2008).

Since precipitation-sized ice scatters microwave radia-

tion, there would be a microwave brightness tempera-

ture depression associated with thunderstorms in the

upwelling ground-based microwave radiation moni-

tored by satellite (Cecil et al. 2005; Liu et al. 2011;

Mohr et al. 1996; Toracinta et al. 2002). A thunderstorm

would appear colder than its surroundings at microwave

frequencies.

Satellites from the Defense Meteorological Satellite

Program (DMSP) have provided global coverage from

1987 to the present (Spencer et al. 1989), and, although

DMSP satellites do not have a lightning sensor, they are

equipped with a microwave imager called the Special

Sensor Microwave Imager (SSM/I; Spencer et al. 1989)

capable of capturing cold microwave brightness temper-

atures (or depressions in the microwave temperature)

associated with thunderstorms (e.g., Mohr et al. 1996).

Research using TRMM LIS and the TRMM Microwave

Imager (TMI) has shown that total lightning is related to

microwave brightness temperatures (Cecil et al. 2002; Liu

et al. 2011; Zipser et al. 2006).

This study explores the potential of SSM/I data to

serve as a way to estimate CG lightning counts. Since

DMSP satellites do not have a lightning sensor,

ground-based CG lightning data from the U.S.

National Lightning Detection Network (NLDN;

Cummins and Murphy 2009; Orville 2008) are used to

evaluate whether the SSM/I can be used to detect

lightning The methods and data processing choices are

described in section 2, the results of the analysis and

comparisons of estimated lightning with observed

lightning are presented in section 3, and the sensitivity of

the results to data processing choices are discussed in

section 4. This study suggests that SSM/I data could be

used to create a global CG lightning dataset.

2. Methods

a. Data

SSM/I sensors have flown aboard the DMSP constel-

lation of satellites since 1987 and have observedmultiple

frequencies in the microwave spectrum. Data from the

different SSM/I sensors are intercalibrated and available

from the Fundamental Climate Data Record (FCDR)

dataset (http://rain.atmos.colostate.edu/FCDR/; Berg

et al. 2013; Sapiano et al. 2013). SSM/I FCDR data are

distributed as data granules (overpass scenes) from the

DMSP satellite. The SSM/I frequencies used in this

study are the vertically and horizontally polarized mi-

crowave channels at 37 and 85GHz, which have spatial

resolutions of 37 km 3 28 km and 15km 3 13km, re-

spectively (Sapiano et al. 2013).

The ice in thunderstorms that is a precursor to

lightning (Blyth et al. 2001; Deierling et al. 2008) also

effectively scatters radiation at microwave frequencies

(Mohr et al. 1996). To investigate the relationship of

lightning and microwave brightness temperatures that

are characteristic of ice, the vertical and horizontal

polarization channels at 37 and 85GHz are linearly

combined into ‘‘polarization-corrected temperatures’’

(PCTs; e.g., Cecil et al. 2002). PCTs are used to mini-

mize the effects of surfaces underlying thunderstorms

on the microwave frequencies, while preserving the

scattering effects of ice (Cecil et al. 2002; Liu et al. 2011;

Mohr et al. 1996; Spencer et al. 1989). PCTs are cal-

culated using

PCT855 1:818T
B,85v

2 0:818T
B,85h

and (1)

PCT375 2:2T
B,37v

2 1:2T
B,37h

, (2)

where TB,85vandTB,37v are the vertically polarized mi-

crowave brightness temperatures at 85 and 37GHz,

TB,85handTB,37h are the horizontally polarized brightness

temperatures at 85 and 37GHz, and PCT85 and PCT37

are the polarization-corrected temperatures at 85 and

37GHz (Cecil et al. 2002; Liu et al. 2011; Mohr et al.

1996; Spencer et al. 1989).

TRMM LIS and the TRMM Microwave Imager,

which is based on the design of the SSM/I (Kummerow

et al. 1998), have already been used to show how

storm features, microwave brightness temperature

depressions, and lightning are related (Cecil et al.

2002; Liu et al. 2011; Zipser et al. 2006), but TRMM

is limited to viewing the tropics and subtropics.

Strengths of DMSP satellites are that SSM/I sensors
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collect microwave data at high latitudes well beyond

TRMM’s range of coverage, they have been observing

the planet since 1987, and the data from the dif-

ferent sensors are intercalibrated (Berg et al. 2013;

Sapiano et al. 2013). DMSP satellites, however, do

not have a dedicated lightning sensor, so coincident

ground-based lightning data from NLDN is used in

this study.

Lightning flash data from NLDN are collected using

;200 ground sensors throughout the contiguous United

States (Biagi et al. 2007; Cummins and Murphy 2009;

Nag et al. 2014; Orville et al. 2011). There is also a

Canadian Lightning Detection Network and an Alaska

Lightning Detection Network (Orville et al. 2011), but

those data were not as readily available. NLDN sensors

detect the electromagnetic signals created by lightning,

and usingmultiple sensors, the location of each lightning

flash can be triangulated and flash rates can be calcu-

lated (Orville 2008; Rudlosky and Fuelberg 2010).

NLDN data have been evaluated to assess the flash and

stroke detection efficiency, accuracy in the peak current

associated with strokes, accuracy in the location of the

strike, and accuracy of the classification of the type of

lightning detected with respect to CG or IC lightning

(Biagi et al. 2007; Cummins and Murphy 2009; Fleenor

et al. 2009; Nag et al. 2014; Nag et al. 2011; Orville et al.

2011). NLDN CG flash data are used in this study to

understand whether SSM/I data can be used to derive a

map of CG lightning flashes. The limitations of the

NLDN that are most relevant here are those that are

related to the detection efficiency and the classification

accuracy.

b. Analysis

The spatial domain in this study is the contiguous

United States, which roughly corresponds to the obser-

vational range of the NLDN (Orville et al. 2011). The

years used are 2005–12. The starting year is after net-

work upgrades in 2002–03 (Biagi et al. 2007; Cummins

andMurphy 2009) and during a year with relatively little

qualitative deviation from the 2001–09 annual clima-

tology (Orville et al. 2011).

SSM/I sensors in orbit from 2005 to 2012 include the

DMSP F13 (1995–2009), F14 (1997–2008), and F15

(2000–present) satellites. The DMSP F16 (2006–

present), F17 (2008–present), and F18 (2010–present)

satellites were also in orbit with similar microwave

sensors [Special Sensor Microwave Imager and Sounder

(SSM/IS)], but SSM/IS sensors observe 91GHz rather

than 85GHz (Kunkee et al. 2008; Yan and Weng 2008)

so are not used. Data from the SSM/I sensors are in-

tercalibrated (Berg et al. 2013; Sapiano et al. 2013) so

F13–F15 should be comparable.

With F13, F14, and F15, there are three more years of

overpasses from F15 than F13, and about one more year

of overpasses from F13 than F14. In terms of diurnal

sampling, the three sensors most often pass over the

contiguous United States from 1200 to 1500UTC (about

0600 to 0900 local time) and 2230 to 0200 UTC (about

1630 to 2000 local time), while from 0500 to 0800 and

1800 to 1930 UTC, there are no samples. These sample

times are consistent with local observing times of sensors

described on the FCDRSSM/I website (http://rain.atmos.

colostate.edu/FCDR/SSM/I.html) and, generally, should

capture the late afternoon to evening peak in storm ac-

tivity over the United States. Within each year of the

study period, the 6-month period between April and

September is used to take advantage of a higher fraction

of annual lightning across the contiguous United States

(Cecil et al. 2014) and minimize the contamination of

snowpack in the microwave data, as discussed below in

this section.

NLDN and SSM/I data are aggregated onto a 1/48
rectangular grid over the contiguous United States to be

able to make direct comparisons between the disparate

data types. NLDN lightning flashes are totaled for each

grid box during the time window corresponding to the

overpass time of the SSM/I sensor over the contiguous

United States (approximately 7min). SSM/I data are

gridded such that the minimum PCT inside the grid box

is used to represent the overall grid box.

NLDN data are largely intended to document CG

lightning, but the NLDN sensors are also sensitive to

IC lightning (Biagi et al. 2007; Fleenor et al. 2009; Nag

et al. 2014). In general, while NLDN has a .90%

detection efficiency for CG lightning (Orville et al.

2011), the IC detection efficiency is ,30% (Cummins

andMurphy 2009), which is why this study is limited to

CG lightning. Fundamentally, NLDN sensors have a

peak current detection threshold of about 5 kA

(Cummins and Murphy 2009), but classifying a de-

tected lightning flash outside of the nominal NLDN

detection threshold as CG or IC is more challenging

since there is no single peak current threshold to

discriminate among the different types of lightning

(Villarini and Smith 2013).

NLDN flash data from March 2008 onward include a

discriminator flag to classify a detected flash as CG or IC

lightning. The distribution of CG and IC according to

the NLDN (Villarini and Smith 2013) suggests that

using a threshold value of peak current to classify

lightning would produce different results than what is

reported by the NLDN. However, Biagi et al. (2007)

evaluated the NLDN classification and found that

lightning with a peak current greater than 120 kA is

likely CG regardless of whether the NLDN classified the
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lightning as CG or IC, and similarly lightning with peak

current less than 210 kA is likely CG. NLDN classifi-

cation of CG or IC lightning has been discussed exten-

sively (Cummins andMurphy 2009;Orville 2008; Orville

et al. 2011; Rudlosky and Fuelberg 2010). For consis-

tency, this study excludes all lightning detections with

peak currents between 210 and 120 kA, in order to

eliminate IC lightning. The remaining lightning flashes

are considered CG and form the basis of the gridded

NLDN dataset used here.

The data from 2005 to 2012 fromDMSP F13, F14, and

F15 satellites included over 13 000 overpasses capturing

part of the contiguous United States. For this study,

those ;13 000 overpass scenes are gridded, and a grid-

ded NLDN dataset for the ;7-min overpass time is

produced as well. Based on past research relating total

lightning from TRMM LIS and TMI data (Liu et al.

2011), the expectation from the NLDN and the SSM/I

data is that CG lightning counts are inversely related to

minimum PCT85 and PCT37.

While PCTs minimize the polarization effect of

water surfaces on microwave radiation, snow creates

brightness temperature depressions in the PCT data-

set (Grody 1991) that are not caused by thunder-

storms, and therefore this snow signal needs to be

filtered from the data to understand how the SSM/I

and NLDN data are related. While this study focuses

on the warm season months from April to September,

there is still significant snow cover in parts of the

contiguous United States. To remove snowpack from

the gridded SSM/I dataset, a filter described by Grody

(1991) was tested, but quality controlling individual

overpass scenes (particularly in April) of the gridded

data revealed evidence that a significant number of

grid boxes with snow remained even after the snow

filter was applied. This ineffectiveness may be a result

of the snow filter having been developed for dry snow

discrimination rather than the wet/melting snow con-

ditions that are more common during the spring

transition months.

The sheer number of overpass scenes in this study

precluded individual quality control, so to efficiently

filter out a greater number of grid boxes with snow

contamination, a CG lightning probability lookup ta-

ble was built from the gridded SSM/I and NLDN data.

The lookup table was compiled by considering

whether any CG lightning flash was recorded within a

grid box with a specific minimum PCT85 and PCT37,

similar to an approach used by Liu et al. (2011). The

probability of CG lightning for a given minimum

PCT85 and PCT37 (Fig. 1) is calculated as the number

of times that CG lightning is observed at a particular

minimum PCT85 and PCT37 divided by the number of

times that a particular minimum PCT85 and PCT37 is

observed. Figure 1b shows the number of data points

contributing to the PCT-dependent calculation. The

probability of CG lightning generally increases for

lower minimum PCT85 and PCT37, but there are

some threshold values evident as well. There is a high

probability of CG lightning when minimum PCT85 ,
165K and when minimum PCT37 , 280K, and be-

yond this threshold, the probability decreases toward

zero with the exception of the diagonal extending to-

ward the top right of the figure. This is qualitatively

consistent with both past analysis of LIS and TMI (Liu

et al. 2011), and with the expectation that small ice

particles will scatter 85-GHz radiation more effec-

tively than lower-frequency radiation (Cecil et al.

2002), which in turn creates deeper brightness tem-

perature depressions at higher frequencies.

Figure 1 is used to filter SSM/I data to minimize the

impact of snow cover in the minimum PCT85 and

FIG. 1. Lightning as a function of microwave brightness temperature at two frequencies shown as (a) the

probability of CG lightning as a function of minimum PCT37 and minimum PCT85 and (b) the number of data

points used to calculate the probability. The gray contour corresponds to 20% CG probability.
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PCT37 data. For this study, all grid boxes where the

minimum PCT85 and PCT37 values together result

in a probability of CG lightning that is less than 20%

(gray contour in Fig. 1) are excluded. This qualita-

tively matches past classification analyses of micro-

wave data (Cecil 2015; Zipser et al. 2006) that show

the region corresponding to less than 20% probability

is about the same as the region that can be more for-

mally attributed to snow. The effectiveness of the

probability filter as a way to filter out snow is discussed

in section 4.

The ;13 000 SSM/I overpasses are processed with

the probability filter to eliminate the majority of non-

storm (snowpack) features in the scenes. One SSM/I

overpass of the contiguous United States is presented

in Fig. 2 and this also shows the CG probability, as well

as the corresponding gridded NLDN data. The proba-

bility filter preserves microwave brightness tempera-

ture features within the SSM/I overpass that are

spatially coincident with NLDN CG lightning flashes.

After the probability filter is applied to every SSM/I

overpass scene, the remaining data are compiled and

evaluated against gridded NLDN data to derive an

empirical relationship between CG lightning and

both minimum PCT85 and PCT37. The CG lightning

data are binned into evenly spaced brightness tem-

perature bins, and an empirical function is used to

model the binned data (Figs. 3 and 4) with at least

N 5 100 occurrences, roughly corresponding to 10%

counting error. Binning the data prevents the over-

sampled data [panels (c),(d),(g), and (h) in Figs. 3

and 4] in higher brightness temperatures—grid boxes

with small or no thunderstorms—from dominating the

empirical fit.

To model the relationship in Figs. 3 and 4, an ex-

ponential function with two fit coefficients is used.

Other models were tested, but with similar or poorer

results, and the exponential function offers potential

for stronger thunderstorms to translate to much more

lightning. Figure 4 shows that the fits are less robust,

FIG. 2. Example of an SSM/IF15 overpass (14 Jul 2010) that included squall-line thunderstorms in theGreat Plains,

showing (a) minimumPCT37 (K), (b) minimumPCT85 (K), (c) probability of CG lightning using the combination of

minimumPCT37 andminimumPCT85, and (d) griddedNLDN lightning counts with the white area corresponding to

the overpass swath, noting that NLDN lightning is observed outside the overpass swath. Gray boxes correspond to

grid boxes with no SSM/I F15 data at either or both of the 37- and 85-GHz frequencies, and gray boxes within the

overpass swath are an artifact of gridding the relatively coarser spatial resolution 37-GHz data.
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partly because of the smaller range of observed mini-

mum PCT37 values, and the model also overestimates

lightning at minimum PCT37 . 250K. Overestimates

for moderate-to-high minimum PCT85 and PCT37

values can dramatically impact results since these data

occur frequently, and the models are applied to each

grid box. The results from the model are assessed be-

low in a number of different ways to understand the

strengths and weaknesses in terms of simulating CG

lightning using SSM/I data.

3. Results

The exponential model is more robust for minimum

PCT85 (Fig. 3) than for minimum PCT37 (Fig. 4) in

terms of the ability of the model to capture the behavior

FIG. 3. The CG lightning count from NLDN as a function of minimum PCT85 (K) from SSM/I for (a) all SSM/I

sensors, (b) F13, (e) F14, and (f) F15. The numbers of data points N are shown in (c), (d), (g), and (h) below the

corresponding panel. The white circles are the mean values of the data in equally spaced bins with N . 100 data

points. The black line is the exponential fit with the equation listed in the panels.
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of the data, and the fit coefficients in the different

models are only weakly dependent on whether data

from a particular SSM/I sensor is used [panels (b)–(h) in

Figs. 3 and 4]. The reasons for the differences are likely a

result of a combination of statistical noise, the sampling

from 2005 to 2012 being biased to F15 relative to F13

and F14, and the impact of different and changing

viewing times of the contiguous United States on the

types of storms typically captured. The similarity be-

tween the models for specific sensors is expected given

the explicit intercalibration of SSM/I data (Berg et al.

2013; Sapiano et al. 2013), and implies that all SSM/I

data can be considered together. Thus, the model that is

derived using all SSM/I sensor data (Fig. 3a) is used to

estimate CG lightning. The noninteger output from the

function in Fig. 3a is rounded down to an integer value,

to be comparable with integer NLDN lightning data.

Figure 5 shows the results of applying the model in

Fig. 3a to SSM/I data for two overpasses. Figures 5a and 5b

show NLDN CG lightning that occurred within the

overpass swath, while Figs. 5c and 5d show CG light-

ning derived from SSM/I. The analysis is restricted to

FIG. 4. As in Fig. 3, but for minimum PCT37.
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the contiguous United States. Figure 2 shows the un-

derlying datasets used to derive Figs. 5b,d,f.

Direct spatial correlation between observed and es-

timated lightning in a particular grid box is generally

weakened by slight collocation differences between

minimum PCT85 features and actual CG lightning, and

this is evident in the difference plots (SSM/I minus

NLDN lightning) in Figs. 5e,f. This collocation problem

likely emerges from the spatial displacement of the

largest ice volumes aloft from the region of most intense

CG activity near the surface, or, in other words, the high

vertical shear environment typical in thunderstorm

formation. The spatial correlation is also impacted by

SSM/I-derived lightning appearing where the NLDN

reported zero lightning (i.e., a false alarm).

In the eastern U.S. case (Fig. 5e), the root-mean-

square (RMS) difference between derived and observed

is 4.0 flashes with a mean number of flashes being 2.1 for

SSM/I and 5.9 for NLDN. Themedian number of flashes

for SSM/I is 1.3, while the median for NLDN is 3.0.

These calculations exclude grid boxes with both zero

NLDN and zero SSM/I lightning. The total number of

FIG. 5. Example of two SSM/I overpasses shown as the white area on the maps that compare (a),(b) NLDN CG

lightning, (c),(d) SSM/I CG lightning derived using minimumPCT85, and (e),(f) the difference calculated as SSM/I

minus NLDN. The color bars show lightning counts per grid box.
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NLDN flashes (within the overpass swath) is 480 and

the corresponding value for SSM/I is 465. The total

and the differences between the mean and the median

together indicate that the distribution of flashes

within a grid box is skewed toward a larger number

per grid box for NLDN, but that the SSM/I method

ends up producing more grid boxes with fewer flashes

for a similar total. This is evident from the large

number of dark red grid boxes in Fig. 5e showing that

there are many small positive differences, often in

locations with zero NLDN flashes (North Carolina,

Indiana, and Kentucky in Fig. 5a). These add up to a

significant contribution to the total lightning in any

given orbital overpass. Although not shown, using

minimum PCT37 produces an even larger total of 1192

for this overpass.

In the Great Plains case (Fig. 5f), again for grid boxes

with lightning from either or bothNLDN and SSM/I, the

RMS difference is 13 flashes, and the total NLDN CG

lightning within the overpass is 1405 (Fig. 5b). Total

SSM/I lightning is 1536 (Fig. 5d), and the overestimate

results from putting more lightning in Colorado and

northern Wisconsin than NLDN reported during the

overpass time window, as well as simply overestimating

lightning in and near the squall line. The mean SSM/I

lightning is 7.2 flashes per grid box, while the median is

1.5. For NLDN, the mean is 14.1 with a median of 5.5.

Again, NLDN reports a higher density of lightning, or

lightning that is concentrated in fewer grid boxes than

what is derived from SSM/I. The mean difference is 4.3

flashes per grid box, with a median of 1.2. The mean

difference in this example is greater than in the eastern

U.S. example, but the median difference is nearly the

same, indicating that for 50% of the grid boxes with

lightning, the difference between the observed and de-

rived lightning is less than ;1.2 flashes.

The question of skill in predicting lightning using

microwave remote sensing can be evaluated using con-

tingency tables (Roebber 2009; Wilks 2011) where re-

sults are presented in a 2 3 2 table in terms of whether

there was a prediction (SSM/I) and an observation

(NLDN) of lightning in a particular grid box. There are

four possibilities for any prediction in a contingency

table: hit (SSM/I . 0 and NLDN . 0), false alarm

(SSM/I . 0, NLDN5 0), miss (SSM/I5 0, NLDN. 0),

or correct negative (SSM/I5 0, NLDN5 0). To evaluate

a contingency table, multiple skill scores have been de-

veloped (Roebber 2009; Wilks 2011). Because lightning

is infrequent within any given SSM/I overpass scene

(e.g., Figs. 2 and 5), the number of correct negatives is

enormous. Of the nearly 44 million grid-box compari-

sons (from the ;13 000 overpasses), 98.9% are correct

negatives. The most useful skill scores for this study are

those that are independent of the number of correct

negatives, so the probability of detection (POD), false-

alarm ratio (FAR), bias B, and the critical success index

(CSI) are presented.

Using the full dataset, Table 1 quantifies the contin-

gency table entries and skill scores that are independent

of the correct negatives, along with the relevant calcu-

lations (Wilks 2011). POD is about 47% and FAR is

about 58%, showing that grid-box hits are rarer than

grid-box false alarms. Similarly, CSI is low because the

false alarms and misses are each greater than the num-

ber of hits. The bias shows that SSM/I microwave data

predict lightning about 10% more often than it occurs,

which itself indicates that false alarms and misses are

similar.

The skill scores are a useful way to evaluate whether

predictions of lightning from SSM/I data can be verified,

but accuracy in the amount of lightning is also a critical

element. Two ways to present the accuracy for the full

dataset are by calculating grid-box to grid-box compar-

isons of SSM/I and NLDN lightning, and by calculating

the sum of all CG lightning flashes within an SSM/I

overpass to compare with the equivalent region of in-

terest for NLDN. The latter will be referred to as sum-

med lightning. The grid-box comparisons are the finest

spatial scale that could be resolved, while the summed

lightning comparison is intended to help us better un-

derstand how false alarms and misses are related to

small collocation differences.

For the grid-box to grid-box comparisons, the distri-

bution is heavily skewed toward low lightning counts for

both NLDN and SSM/I. The median (and 5th–95th

percentile range) of lightning counts in grid boxes with

hits is 4 (1–37) for NLDN and 3 (1–18) for SSM/I. Thus,

SSM/I underpredicts the total lightning in grid boxes

with the highest NLDN totals. Also important is the

magnitude and range for grid boxes with false alarms

and misses. For SSM/I in grid boxes with false alarms,

the median is 2 (1–6). For NLDN in grid boxes with

misses, themedian is 2 (1–12). In other words, the misses

TABLE 1. Contingency table values and skill score calculations

for the full grid-box to grid-box comparison of NLDN-observed

lightning and SSM/I-predicted lightning.

Quantity Calculation Value

Hits a 139 404

False alarms b 189 382

Misses c 160 206

Correct negatives d 43 410 589

POD a/(a 1 c) 0.465

FAR b/(a 1 b) 0.576

B (a 1 b)/(a 1 c) 1.097

CSI a/(a 1 b 1 c) 0.285
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and false alarms are for grid boxes with lightning counts

much lower than the highest values in grid boxes with

hits. False alarms and misses are often located near each

other within the same scene, as one could infer from

Fig. 5. In statistics for the grid-box comparisons, these

would be failures at particular grid boxes, but re-

alistically SSM/I is giving the right idea in those situa-

tions, without precisely identifying the lightning

locations. Overall, the RMS difference for grid boxes

with hits is 16 flashes, with SSM/I biased low at high

values of NLDN and high at low values of NLDN. The

RMS difference increases as a function of NLDN

lightning counts, but the RMS difference calculated as a

percent of the mean (ratio of the RMS difference to the

mean value of NLDN and SSM/I lightning counts or,

henceforth, RMS percent) for the grid-box to grid-box

comparison is 127% with little variation as NLDN

lightning counts increase.

To minimize the effects of misses and false alarms on

comparisons of NLDN and SSM/I lightning, the sum-

med lightning comparison from each of the ;13 000

overpass scenes in shown in Fig. 6. In Fig. 6a, each gray

point represents the summed lightning within an over-

pass (lightning per SSM/I orbit) from NLDN in grid

boxes with hits and misses and from SSM/I in grid boxes

with hits and false alarms. The large circles in Fig. 6 are

FIG. 6. (a) Summed lightning in each of the ;13 000 SSM/I overpasses calculated from

NLDN observations compared with summed lightning from SSM/I using PCT85 (small gray

points).White circles are the means of values within equally spaced summed lightning bins that

have N . 10 data points. Large gray circles are means of values in the bins with N , 10 data

points and are excluded from the regressions. Linear regression equations are shown and

correspond to different ways of comparing NLDN and SSM/I. (b) The RMS percent difference

between the NLDN- and SSM/I-summed lightning.
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the average values of the data in evenly spaced bins,

calculated to unweight the comparison from the large

oversampling of low summed lightning counts. The thin

gray line in Fig. 6 shows the one-to-one comparison,

while the black line shows the best-fit line to the binned

data that have N . 10 (large white circles) data points.

The best-fit equations to the large white circles and to

gray data points are shown in Fig. 6, as is the equation for

the scatterplot of individual grid-box comparisons.

Figure 6b shows the RMS percent as a function of the

NLDN summed lightning.

From Fig. 6, the slopes of the best-fit lines to the

NLDN and SSM/I summed lightning (0.56, 0.56) suggest

much better agreement than for grid-box comparisons

(slope of 0.18), and this shows how the spatial colloca-

tion problem (e.g., Figs. 5e,f, Table 1) weakens the re-

sults. The positive y intercept in all the best-fit lines

indicates that SSM/I lightning is biased high for low

amounts of lightning, while the slopes less than one in-

dicate that SSM/I is biased low for higher amounts

of lightning, which is consistent with the grid-box anal-

ysis above.

Figure 6b provides a way to estimate the uncertainty

for summed lightning that attempts to minimize the ef-

fects of the collocation problem and speaks to the po-

tential of SSM/I in estimating lightning accumulated

within a region. For any scene with about 300–2000

flashes, the RMS percent is about 60%–70%. As the

summed lightning decreases below 300, the RMS per-

cent increases to over 100%. In the first bin in Fig. 6b, for

example, the mean NLDN summed lightning is 44

flashes, the mean SSM/I summed lightning is 55 flashes,

and the RMS difference is 77 flashes. This suggests that

the lowest threshold of detection of the summed light-

ning in an SSM/I overpass is about 77 flashes, but

thunderstorms (e.g., Fig. 5) can produce far more flashes

even within the time frame of an SSM/I overpass. The

RMS percent difference in that bin is 77 divided by the

mean of 44 and 55 to get the 156% shown in Fig. 6b.

Furthermore, the RMS percent in the summed lightning

comparison is about one-half of the RMS percent in the

grid-box comparison, suggesting that slight mislocations

of SSM/I relative to NLDN (i.e., misses and false

alarms) roughly double the percent uncertainty.

4. Discussion

The results suggest that SSM/I-summed lightning for

an entire overpass compares better to NLDN-summed

lightning than the comparisons for individual grid boxes

because of spatial collocation issues evident in the rel-

atively high numbers of misses and false alarms (Table

1). This is evident in the improvement seen in the slope

of the best-fit lines in Fig. 6a when comparing lightning

in individual grid boxes with summed lightning. A spa-

tiotemporal climatology of large-scale lightning in the

contiguous United States may be the most immediate

application of this study, with uncertainties in summed

lightning closer to 60%–70% (Fig. 6b) as opposed to over

100% for specific grid-box predictions (section 3).

Summed lightning results across the contiguous

United States during the entire sample period from

April to September for the years 2005–12 are shown in

Fig. 7 for grid boxes with hits, misses, and false alarms.

Figures 7a and 7b compare summed lightning from

NLDN and SSM/I for grid boxes with hits. The corre-

lation coefficient of the two maps (henceforth, spatial

correlation) is 0.78, which is statistically significant

(p value is less than 0.05) and suggests that when lightning

is predicted using SSM/I microwave brightness tem-

peratures, it is spatially well matched with NLDN

lightning. Figures 7c and 7d show summed lightning

fromNLDN in grid boxes withmisses and from SSM/I in

grid boxes with false alarms, respectively. Figure 7c

shows that the highest summed lightning counts that are

missed by the SSM/I method are in the southwest and

southeast United States, as well as parts of the Ohio

River valley. Overall, SSM/I-summed lightning where

there are hits (Fig. 7b) is generally greater than the

summed lightning where there are misses or false

alarms, but clearly NLDN-summed lightning where

there are hits (Fig. 7a) indicates consistent un-

derestimates of lightning from SSM/I.

Figure 8 shows NLDN-summed lightning for grid

boxes with hits and misses (Fig. 8a) and SSM/I-summed

lightning for grid boxes with hits and false alarms

(Fig. 8b), as well as SSM/I-summed lightning minus

NLDN-summed lightning (Fig. 8c) and the ratio of the

difference in Fig. 8c to the total in Fig. 8a. Figure 8a is

the total of Figs. 7a and 7c, and Fig. 8b is the total of

Figs. 7b and 7d. While the values are only for SSM/I

overpass times, a qualitative comparison with a

multiyear-average NLDN lightning dataset from

Orville et al. (2011) reveals similar prominent features

such as lightning maxima in Florida and along the

northern Gulf Coast, with dwindling lightning from

the Mississippi River valley into the Great Plains and

much less lightning in the mountain and coastal

western regions.

Figure 8c shows how SSM/I is biased high in the

northern plains and throughout the mountain and

coastal West, but biased low throughout the Southeast

and Southwest, and along the Ohio River valley. There

is a strong transition from high to low biases on either

side of a diagonal from southwest Kansas to southern

Wisconsin. Figure 8d shows the ratio of the difference to
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the NLDN-summed lightning to give an indication of

how significant the difference actually is: values less than

onemean the difference is less than themagnitude of the

total observed lightning. The small differences in the

mountain west are large relative to the number of flashes

actually recorded by the NLDN. The best agreement in

terms of the ratio comparison is in a band from northern

Texas to Iowa and southern Wisconsin.

SSM/I data underestimates the lightning by about

50% or less in the eastern and the southwest United

States (Arizona and New Mexico) based on Fig. 8d.

Overestimates scattered through the West (western

Wyoming) are due to either residual snowpack that the

probability filter did not capture or high-elevation

terrain. Overestimates in the northern plains are

more challenging to explain, but this area has been

FIG. 7. Summed lightning calculated as (a)NLDN-summed lightning for grid boxeswith hits, (b) SSM/I-summed lightning for grid boxes

with hits, (c) NLDN-summed lightning for grid boxes with misses, and (d) SSM/I-summed lightning for grid boxes with false alarms. Gray

grid boxes have zero lightning for both NLDN and SSM/I during the sample period of study.

FIG. 8. Comparisons of summed lightning shown as (a) NLDN-summed lightning for grid boxes with hits or misses, (b) SSM/I-summed

lightning for grid boxes with hits or false alarms, (c) the difference in summed lightning calculated as (b) minus (a), and (d) the ratio of the

difference in (c) to the NLDN-summed lightning in (a) to convey the magnitude of the absolute difference. Note varying color bar scales.

Gray grid boxes have zero lightning for both NLDN and SSM/I during the sample period of study.
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documented to have higher IC-to-CG and positive-CG

to negative-CG ratios (e.g., Boccippio et al. 2001;

Medici et al. 2015), suggesting a regional dependence

to the thunderstorm morphology (e.g., Carey and

Rutledge 2003; MacGorman et al. 1989; Schultz et al.

2011; Williams et al. 1999) that affects the methods in

this study. There is no particular physical reason to

expect the SSM/I-based approach to be better suited to

CG lightning than to total lightning, so it is not sur-

prising that we are overestimating the CG lightning in a

region known for high IC-to-CG ratios.

Figures 7 and 8 show maps using a 20% probability

filter (i.e., Fig. 1) on SSM/I data at a spatial resolution of

0.258 with a specific CG and IC lightning threshold ap-

plied to the NLDN data, so there is good reason to test

the sensitivity of the results to these choices in the

analysis. The sensitivity is evaluated within the frame-

work of changes in contingency table skill scores and

accuracy metrics in the discussion below.

The probability filter is intended to prescreen the

SSM/I data and minimize contamination by other fea-

tures within an SSM/I overpass that result in brightness

temperature depressions, such as snowpack. As the

strength of the probability filter decreases, the bias in-

creases from 1.1 (Table 1) to 3–4 for probability

thresholds of 1%–5%, and the FAR also increases to

about 80%. POD increases as well, but not as quickly as

FAR and the bias. Correspondingly, as the strength of

the probability filter increases, the bias, FAR, and POD

all decrease. The 20%probability filter used in this study

balances FAR and POD at about 50% with a bias of

close to one, which is quantitatively similar to skill

scores associated with snow and tornado forecasts

(Roebber 2009).

Another way of evaluating the effectiveness of the

choice of probability filter is by applying amore aggressive

filtering by excluding months with the highest potential

for snow in the contiguous United States (April andMay)

and/or filtering out high-elevation terrain from the dataset

to avoid lingering mountain snow. These additional filters

applied to the probability-filtered SSM/I datasetmake less

of a difference in terms of contingency table skill scores

and accuracy metrics (such as RMS) than increasing the

strength of the probability filter itself. For example, for a

give probability filter, the bias, POD, FAR, and RMS

difference essentially remain unchanged across a range of

elevation filters ranging from excluding all grid boxes with

elevation greater than 1000m to 1500–2000m. Similarly,

excluding April and May does not significantly improve

the results. There are some specific exceptions with strong

false alarms in the mountainous terrain of western

Wyoming, western Colorado, and the Sierra Nevada in

east-central California (Fig. 7d), but these problems are

secondary to the more significant under- and over-

estimates in the nonmountainous terrain east of the

Rockies (Figs. 8c,d).

In addition to sensitivity to the probability filter, the

results are sensitive to the spatial resolution used for

gridding, but the overall results become worse as the

spatial resolution increases from 0.258 to 2.08. Further-
more, the collocation issue—where microwave bright-

ness temperature depressions are not always being

spatially coalignedwith regions of intenseCG lightning—

is not resolved with coarser analysis resolution. Spatial

and temporal smoothing of the estimated lightning, sim-

ilar to what is done with OTD and TRMM LIS lightning

maps (Cecil et al. 2014), may be a way to improve spatial

correlation, but high resolution is needed to capture the

spatial location of lightning relative to the thunderstorm.

In terms of correlation and RMS, the methods degrade

rapidly for spatial resolutions greater than 0.58. Coarser
resolution tends to assign minimum brightness tempera-

ture features associated with strong thunderstorms to

an inordinately large grid box and results in excessive

lightning flashes.

The CG and IC discrimination peak current is an

imperfect threshold (Fig. 1) as well. The thresholds

chosen for the analysis here (210 kA to 120 kA are

excluded, as possible IC lightning) are consistent with

results from field verification studies (Biagi et al. 2007;

Fleenor et al. 2009). Arbitrarily testing different

thresholds, however, would ignore the physically based

evidence from those studies related to the classification

of CG and IC lightning by the NLDN. Certainly, the

thresholds used in this study could be changed if new

evidence emerges from additional field work, but for this

study, there is no reason to circumvent the available

findings in the literature.

Considering the sensitivities together with the results

in Figs. 6–8 suggests the probability filter alone is rela-

tively effective at minimizing snow or other non-

thunderstorm microwave artifacts, but that the model

itself may have regional dependencies that require a

deeper investigation. Uncertainties in the methods at

the grid-box scale are susceptible to spatial collocation

issues and range to values of about 127%, but when the

summed lightning within an SSM/I overpass is consid-

ered, the uncertainties decrease to about 60%–70%.

This suggests that summed lightning within thunder-

storm complexes could be captured once the regional

dependencies are investigated.

5. Conclusions

A model (Fig. 3) derived from SSM/I brightness

temperature and NLDN CG lightning is used to
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estimate CG lightning from SSM/I minimum PCT85

data (Figs. 6–8). From Fig. 3 we can see that F13, F14,

and F15 have very similar models, which suggests that

the SSM/I intercalibration efforts (Berg et al. 2013;

Sapiano et al. 2013) are indeed providing homogeneous

data across generations of SSM/I sensors, and lends

confidence that data from prior SSM/I sensors (F8, F10,

and F11) and current SSM/IS sensors (F16,F17, F18, and

F19) could also be used to understand, at least to first

order, a longer history of CG lightning data since 1987.

The methods are derived for the weather regime of

the contiguous United States because of the range of the

NLDN, and during warm seasonmonths tominimize the

impact of snow, but SSM/I sensors are global in their

viewing and include vast regions of the world that have

not been extensively characterized even by TRMM LIS

(Cecil et al. 2014). For example, the northern latitudes of

Earth are experiencing marked changes to fire regimes

that are at least in part influenced by lightning flashes as

ignition sources (Flannigan et al. 2013; Stocks et al.

2002). However, while new lightning sensors, such as

ones on the International Space Station, GOES-R,

GOES-S, and Meteosat Third Generation, will provide

views of the high latitudes, TRMM LIS did not map

lightning at these latitudes, and the global lightning cli-

matology has relied on the brief OTD dataset (Cecil

et al. 2014). CG lightning derived from SSM/I would

certainly offer a much broader spatiotemporal view of

lightning during a time of changes in weather that are in

part due to the changing climate. Larger-scale compos-

ites of lightning within a scene could be valuable for use

in global fire models (e.g., Li et al. 2013; Pechony and

Shindell 2009) and chemical transport models (e.g.,

Levy et al. 1996; Price et al. 1997).

The uncertainty in SSM/I-derived summed lightning

within an SSM/I overpass is about 60%–70% (Fig. 6),

while the uncertainty in individual grid-box comparisons

is about a factor of 2 greater as a result of slight spatial

collocation problems (i.e., false alarms and misses). The

uncertainty of about 60%–70% is consistent with the

comparison of summed lightning during the study pe-

riod of April–September 2005–12 (Fig. 8). There is,

however, significant regional variability in the un-

certainty (Figs. 7 and 8) that suggest that methods would

need careful refinements to be applied at spatial scales

beyond the United States. Refinements for future re-

search include regional dependencies of the function

used to model CG lightning (Fig. 3) and a better way to

filter snowpack. A more complex empirical model of

how lightning and minimum PCT85 data are related

may better capture the lightning in scenes with large

lightning totals as well as the more common small

lightning totals that drive the comparisons. This study

shows that there is good potential for estimating light-

ning frommicrowave remote sensing, but that reduction

in uncertainty is a necessity before the methods could be

applied outside of the United States.
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