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Evaluation of PM2.5 measured in an urban setting using a low-cost optical
particle counter and a Federal Equivalent Method Beta Attenuation Monitor
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aDepartment of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA; bClean Air
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Davidson College, Davidson, North Carolina, USA

ABSTRACT
We present the results of a multi-season field evaluation of a low-cost optical particle count-
ing sensor (Purple Air PA-II) that reports mass concentration of particulate matter with diam-
eter less than 2.5 microns (PM2.5), and is part of a relatively large and growing network of
microelectronic internet-of-things sensors. We assessed 16months of PA-II PM2.5 data col-
lected in a near-road urban setting in the humid climate of Charlotte, North Carolina. The
PA-II was collocated with a Federal Equivalent Method Beta Attenuation Monitor (BAM
model 1022), and with a weather station that monitored ambient relative humidity (RH) and
temperature (T). We tested and used a multiple linear regression model with BAM PM2.5,
RH, and T as predictors to model the reported PA-II PM2.5. The results show a 27–57%
improvement in the accuracy of the PA-II PM2.5 data relative to the reference data from the
BAM, with the highest percentage improvements for moderate to high RH. The methodolo-
gies in our study are broadly applicable to other field studies of low-cost monitors, and the
results are a critical improvement that suggest that PA-II may indeed be suitable for air
quality, health, and urban aerosol research.
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1. Introduction

Air quality is a complex part of the urban environ-
ment that is susceptible to degradation from changing
emission sources including vehicular traffic, busi-
nesses, industry, and residential activities (Harrison
2018; Lewis 2018; McDonald et al. 2018). Research
often concentrates on the health effects of poor air
quality at the population scale (Ebenstein et al. 2017;
Hoek et al. 2013) to motivate a regulatory framework
to manage the permitting of stationary and mobile
sources of pollution (Berger et al. 2017). Citizen sci-
ence directly connects air quality data and/or data col-
lection with individuals, and also increases the
engagement of community members in aspects of
their own urban environment, such as a source of air
pollution, that may be causing real or perceived con-
cerns (Snyder et al. 2013; Storksdieck et al. 2016). The
rise of low-cost, readily deployable air monitoring
instrumentation provides a pathway to enhance citizen
science and engagement (Castell et al. 2017; Schneider

et al. 2017), and potentially offer insights at finer spa-
tial scales beyond any established regulatory monitor-
ing network (Kaufman et al. 2017; Morawska et al.
2018). For these endeavors to be successful, low-cost
devices must undergo field and lab testing over time,
space, and a range of relevant pollution concentrations
and weather conditions (Lewis and Edwards 2016;
Williams et al. 2014; Woodall et al. 2017).

This cross-disciplinary study evaluates an internet-
of-things (IoT) low-cost air monitoring sensor called
the second generation Purple Air (PA-II) that meas-
ures the number concentration of particles ranging
from diameters of 0:3� 10 lm; and uses this data to
derive the mass concentration of particulate matter
for particles with diameters less than 2:5 lm (PM2.5)
and other size specific mass concentrations. The PA-II
is built with standard IoT technologies with the main
particle sensors being a pair of Plantower PMS5003
sensors (Zamora et al. 2019) referred to in the PA-II
data stream as sensors A and B. The company markets
the PA-II to the end-user as an off-the-shelf, low-cost
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(�$200), deployable sensor package. Advantages to PA-
II include no specific expertise for deployment, a

company-maintained cloud server for data which pre-
cludes the need for any user-based data management

Figure 1. Map of sampling location showing Mecklenburg County in south-central North Carolina, major freeways and roads, and
the airport relative to the collocation site at the Remount Road sampling station (yellow dot) maintained by the Mecklenburg
County Air Quality office. Note that the downtown Charlotte area surrounded by the 77 and 277 freeways is located about 1–2
miles east-northeast of the Remount Road station.
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infrastructure, data that can be digitally re-directed to
other servers, archiving of ancillary data (such as the
size-segregated particle counts) that are used to deter-
mine the reported PA-II PM2.5, and measurements of
relative humidity (RH) and temperature (T). All of this,
combined with the open source data collection and low
instrument cost, is perhaps the main reason there are
over 2000 PA-IIs deployed worldwide by public organi-
zations and private citizens as of August 2018 (https://
www.purpleair.com/map). While interest in the PA-II
and similar IoT devices has grown, scientific commun-
ities and regulatory agencies continue to try and under-
stand the details of how the reported data compares
with established methods of monitoring PM2.5 (Crilley
et al. 2018; Lewis and Edwards 2016; Zamora
et al. 2019).

The PA-II measures number concentration for dif-
ferent size ranges by relating the optical scattering by
suspended particles in the air drawn into the PA-II
sample volume (Northcross et al. 2013; Zamora et al.
2019), but the specific calculations used to aggregate
and convert the number concentrations into a single
mass concentration such as PM2.5 are not available.
Fundamentally, it is well understood that this conver-
sion from number to mass concentration is not trivial
(Hegg and Kaufman 1998; Reid et al. 2005; Seinfeld
and Pandis 2016) since there is sensitivity to assump-
tions about the mass density of particles in the sample
population, uncertainty in the size-segregated number
concentration measurements, and to variable physical
and chemical properties of the particles that impact
light scattering. Furthermore, the particle size distribu-
tion, which is sometimes referred to as an aerosol size
distribution (Seinfeld and Pandis 2016), is sensitive to
ambient RH (Hegg, Larson, and Yuen 1993).

High RH has been discussed as a barrier in a num-
ber of studies of low-cost instrumentation (Carvlin
et al. 2017; Crilley et al. 2018; Rai et al. 2017). PA-IIs,
for example, measure number concentrations of par-
ticles with diameters as small as 0:3 lm; but the real
atmosphere also has significant numbers of particles
with even smaller diameters (Kumar et al. 2014;
Posner and Pandis 2015). Scientific or regulatory
research usually measures aerosol properties (number,
mass) of a “dried” air sample (Kotchenruther and
Hobbs 1998; Magi and Hobbs 2003; Magi et al. 2005;
Petters and Kreidenweis 2007). In practice, drying the
air is usually accomplished by heating the sample inlet
that draws in ambient air, evaporating the liquid
water condensed onto the particle, and then isolating
the water condensate from the air stream before sam-
pling. A target sample RH of a heated air sample

would be around 30% under controlled conditions.
The dried air PM2.5 mass is the metric that is eval-
uated in scientific and regulatory studies since water
vapor and RH are highly variable diurnally, seasonally,
and spatially.

We used the PA-II to measure PM2.5 in the near-
road urban environment in Charlotte, North Carolina
(Figure 1), from March 2017 through June 2018. The
PA-II was collocated with a Beta-Attenuation Monitor
(BAM; Model 1022 manufactured by MetOne, Inc.,
Grants Pass, Oregon) that is used as a Federal
Equivalent Method (FEM) to measure PM2.5 for com-
pliance assessment in the Charlotte region. In addition
to PM2.5 data, the collocation site also included a
weather station for monitoring ambient T, RH, and
wind. All raw PA-II and BAM data are publicly avail-
able, as are the processed data specific to this study.

The fundamental question we explore is how PA-II
reported PM2.5 compares with reference PM2.5 data
from one collocated BAM 1022 over the period of
16months of nearly continuous sampling. We discuss
steps to quality control the PA-II data, evaluate the
limit of detection (LOD), and present comparisons
with BAM data that lead to a correction method that
accounts for the role of ambient RH and T variability.
Our flexible methodology can be used to post-process
off-the-shelf PA-II PM2.5 data, and our results show
that corrected PA-II PM2.5 are over 45% more accur-
ate when compared with reference data from the
BAM. We also show that the PA-II is a reliable field
instrument; for the 16months referred to in this
study, PA-II required no parts replacement or re-cali-
bration, and the device accuracy did not degrade sig-
nificantly. Our findings increase the scientific and
stakeholder relevance of the low-cost air quality data
(Morawska et al. 2018) collected in urban and non-
urban environments.

2. Methods

2.1. Sampling

The PA-II microelectronics are contained in a palm-
sized plastic cap that acts as a shield from precipita-
tion and direct sunlight – images are available at the
Purple Air website. Our off-the-shelf sensor has been
sampling continuously since March 2017, and the
plastic protective cap is exposed to direct sunlight for
significant parts of each day in our sample location.
We have not undertaken any maintenance of the PA-
II. A weatherproof power cord extends from the elec-
tronics, and in addition to the first Plantower particle
counter (Sensor A), the plastic cap houses a second
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identical Plantower sensor (Sensor B) counter, Wi-Fi
transmitter, hygrometer for measuring RH, and
thermometer for measuring T. These RH and T data
are related to ambient RH and T, but are not the
same. We discuss this difference, the data from the
additional particle counter, the role of RH and T vari-
ability, and the reliability of the sensor below.

The PA-II was positioned about 2 m from the sam-
pling inlet of the BAM 1022, the latter of which is
maintained by Mecklenburg County Air Quality
(MCAQ) staff scientists. A full description of the BAM
1022 and its standard operations can be found at the
manufacturer’s website (https://metone.com/air-qual-
ity-particulate-measurement/regulatory/bam-1022/). In
November 2013, the MetOne BAM-1022 was desig-
nated by the US EPA as an FEM for the collection of
PM2.5 (Gobeli, Schloesser, and Pottberg 2008).
Routine calibration and verification activities by
MCAQ include flow calibration, temperature calibra-
tion, pressure calibration, and relative humidity cali-
bration every 6 months, flowrate/temperature/pressure
verification every month, and flowrate/temperature/
pressure audit quarterly.

The Remount station is 3.2 km southwest of the
urban center of Charlotte, adjacent to a major freeway
(I-77 South) on a street called Remount Road (Figure
1). Because of this particular location in the Charlotte
area, we refer to the instruments as the Remount PA-
II and Remount BAM, and note that the Remount
BAM serves as the reference data set in this study.
The Remount station also includes a weather station
that reports hourly relative humidity (Met One Model
083E-35), temperature (R.M. Young Model 41432VC),
wind speed and wind direction (Met One Model
50.5H). We explicitly consider the influence of relative
humidity and temperature in our analysis.

2.2. Data processing

The Remount PA-II sensor was deployed in March
2017 and sampled continuously through June 2018,
with values recorded about once every 90 s. In our
study, we used the PA-II PM2.5 data field called
“PM2.5_CF_ATM” which is available for both the
PM2.5 sensors in the PA-II package, and uses the
“atmospheric” setting for particle density to derive
PM2.5 from the measured number concentrations
(Zamora et al. 2019). Hourly PM2.5 and weather data
from the Remount BAM and weather station were
obtained from the public AirNow website.

For comparison with BAM data, we averaged raw
PA-II data to hourly increments applying quality

control filters to the raw �90 s data. First, when the
reported values of PA-II PM2.5 are less than about
5 lg m�3; there is often an artificially repeated value
in many consecutive time steps of reported data. We
assume this is an artifact because of the very low con-
centrations being sampled but also because it is statis-
tically unlikely that the number of particles remains
exactly the same from one 90 s sample to the next.
We chose to exclude any repeated values within three
time-steps. The second step is to calculate hourly
averaged PA-II data using the �90 s quality-controlled
raw data. We required a minimum of 20min of the
hour to be reported for a valid hourly average.
Missing data from PA-II arises from quality control-
ling for repeated-values artifacts described above,
instrument downtime from power or internet loss,
and network downtime from the manufacturer, but in
total only accounts for 4.5% of the 11,832 h of data in
the sample period. The BAM data are distributed as
hourly averages that are produced with a 75% com-
pleteness requirement (45min of the 60min). This is
stricter than what we applied to PA-II, but this choice
had minimal impact on our final results.

After the data from March 2017 through June 2018
were downloaded and averaged to hourly time scales,
we then considered the hourly LOD. We adopt the
BAM 1022 manufacturer-determined hourly LOD of
2:4 lg m�3 (https://metone.com/air-quality-particu-
late-measurement/regulatory/bam-1022/). Since PA-II
LOD is not well established, we surmise that the PA-
II LOD is greater than the BAM 1022 LOD (a lower
estimate), and use segmented regression (also known
as a broken stick regression), a standard statistical
method, to estimate a level of PM2.5 above which we
are confident that we have signal and not random
data. Using hourly PA-II and BAM PM2.5 in the seg-
mented regression, we estimate the upper limit of PA-
II LOD as 7:5 lg m�3 (Figure S1). Acknowledging
that this is an overly simplistic field-determined LOD,
we nevertheless estimate PA-II hourly LOD as the
average of our lower and upper estimate, or
5:0 lg m�3; which at least is consistent with an LOD
analysis using similar IoT sensors (Wang et al. 2015).
For the hourly PM2.5 comparisons and the regression
analysis described below, all BAM data less than LOD
of 2:4 lg m�3 or PA-II less than LOD of 5:0 lg m�3

are excluded. In total, 612 h of BAM PM2.5 data and
1740 h of PA-II PM2.5 were less than their respective
LODs, or about 20% of the over 11,000 h remaining
after the first quality control filters.

The final data processing step is to analyze the
comparisons only when we have a sufficient number
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of observations to avoid drawing conclusions about
undersampled values of reported PM2.5, which also
weaken the assumption of normality in the residuals
discussed below. In particular, while we collected field
data across a wide range of weather conditions, the
reported PM2.5 values were available across a more
limited range (Figure S2) owing mainly to the rela-
tively low PM2.5 concentrations in our sample loca-
tion. Referring to the reference BAM PM2.5 data,
both before and after LOD is applied to the data, 99%
of the sampled data was for PM2.5 less than
30 lg m�3: For uncorrected PA-II PM2.5, 99% of the
sampled data was for PM2.5 less than 50 lg m�3: For
this study, we limit the analysis to include only hourly
averaged values when PA-II PM2.5 is less than
50 lg m�3; which excludes 60 h of the data.

3. Results

Following the quality-control steps, and the applica-
tion of the hourly LOD for each instrument, a simple
linear regression of hourly PA-II PM2.5 onto BAM
PM2.5 shows that PA-II is biased high (Figure 2)
which is consistent with similar collocation and lab
comparisons (Holstius et al. 2014; Kelly et al. 2017;
Wang et al. 2015; Zamora et al. 2019). Root-mean-
squared error (RMS) and the mean absolute error

(MAE) are the metrics we use in this study to sum-
marize this and other comparisons; MAE tends to be
less influenced by outliers but RMS is a more com-
mon calculation. RMS and MAE for the comparison
in Figure 2 are 7:5 and 5:8 lg m�3; but the small col-
ored squares show how the comparison depends on
the ambient RH. As RH increases from 30% to 90%,
RMS increases linearly from 5:0 to 8:8 lg m�3 and
MAE from 3:7 to 7:1 lg m�3:

Other factors, such as weather, play a role in
understanding the values reported by a low-cost sen-
sor (Morawska et al. 2018), so we investigated mul-
tiple linearity by comparing PA-II and BAM PM2.5,
PA-II and ambient RH, and PA-II and ambient T
using a simple linear regression, along with histo-
grams showing how often hourly PA-II PM2.5 was
sampled as a function of the same three variables
(Figure S3). Over the 16months of sampling, ambient
temperature (T) and relative humidity (RH) from the
Remount Road weather station varied from �11:5�C
to 35:6�C with a mean and standard deviation of
1669�C; and from 30% to 100% with a mean and
standard deviation of 66%622%: As is typical of the
climate of North Carolina, RH was elevated in every
season of the year, with 75% of the hourly data
recording RH > 47%.

The linear dependence of PA-II PM2.5 on BAM
PM2.5 and RH, and to a lesser degree on ambient T
are the basis for defining the predictors of PA-II
PM2.5 in the following multiple linear regression
(MLR) model:

PM2:5PA�II ¼ a0 þ a1PM2:5BAM þ a2RH þ a3T; (1)

where a0; a1; a2; and a3 are the MLR fit coefficients,
PM2:5PA�II and PM2:5BAM are in units of lg m�3;

RH is in units of percent, and T is in units of Kelvin.
The goal of the model is to adjust the hourly
PM2:5PA�II to better match the reference PM2.5 from
BAM. The MLR fit using all available and valid pre-
dictor data (i.e., Figure S3) with PM2.5 from PA-II
sensor A produces a0 ¼ �25:5561:87; a1 ¼
1:2560:01; a2 ¼ 0:09960:003; and a3 ¼ 0:07260:006
(plus/minus indicates standard deviation in the regres-
sion coefficients). The coefficient of determination
(R2) for the model is 0:60; which suggests that about
60% of the variability of PM2:5PA�II about the mean
value is explained by the MLR model.

The statistical strength of the MLR model itself is
partly justified by the low uncertainty of the fit coeffi-
cients and relatively high R2 value, but we also evalu-
ate the residuals of the model, and the overall
effectiveness of the model using RMS and MAE. The
residuals violate the constant variance assumption

Figure 2. Hourly PM2.5 reported by PA-II versus BAM 1022,
where the lower limit of detection (LOD) of 5 lg m�3 applied
to the PA-II data and LOD of 2:4 lg m�3 for BAM 1022. The
data are also limited to raw PA-II PM2.5 less than 50 lg m�3;
due to lack of available data at these high concentrations from
the particular sample location. The squares are the average
PM2.5 values for RH of 0–40% (dark red), 40–60% (light red),
60–80% (green), 80–100% (blue), showing that the high bias
increases as a function of RH. Black line is the one-to-
one comparison.
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underlying the regression but have nearly normal dis-
tribution about zero (Figure S4) suggesting that there
are no significant predictors missing from the model,
but that uncertainty is likely underestimated for
higher predicted PM2.5 values. Typically, non-con-
stant variance is overcome by transforming the pre-
dictand in the regression model (i.e., log or box-cox
transform). We explored this, but found that the
model using a transformed predictand drifted to nega-
tive PM2.5 values that were difficult to reconcile with
real particle physics (negative mass is physically mean-
ingless, even though it is statistically acceptable). The
corrected PM2:5PA�II is calculated by inverting the
MLR as

PM2:5PA�II; corrected ¼ PM2:5PA�II�a0�a2RH�a3Tð Þ
a1

:

(2)

The corrected PM2:5PA�II is plotted in Figure 3,
and the MAE and RMS compared with reference
PM2:5BAM are 3:2 and 4:1 lg m�3: Compared with
the statistics in Figure 2, the RMS and MAE decrease
by about 45%, even though 40% of the variability of
the PM2:5PA�II is unexplained by the model. A regres-
sion model that excludes ambient RH and T also
improves the absolute comparison, but by about 41%.
We explore the role of RH and T variability below.

To understand the sensitivity of the MLR fit, we
use Monte Carlo cross-validation to test model stabil-
ity and effectiveness at capturing values outside of the
data used to determine the model coefficients.
Specifically, we randomly select 90% of the full data
to use in the MLR model, and then use the remaining
10% as an out-of-sample validation data set. This
randomized subsetting produces a new set of fit coef-
ficients for every permutation (i.e., a Monte Carlo
process). The fit coefficients from each permutation
are then used with the validation subset of the data to
produce a set of predicted PM2.5 values. These and
the model fit coefficients are then evaluated in a simi-
lar way as the results from the full model.

The RMS, MAE, R2; and the three variable-specific
fit coefficients are plotted as histograms of the results
of the 10,000 Monte Carlo permutations (Figure S5).
The mean and standard deviation of the fit coeffi-
cients from the Monte Carlo cross-validation are a0 ¼
�25:5560:57; a1 ¼ 1:25560:005; a2 ¼
0:099260:0009; and a3 ¼ 0:07260:002; and the corre-
sponding mean and standard deviation of the good-
ness-of-fit metrics are R2 ¼ 0:5760:03;
RMS ¼ 4:160:1 lg m�3; and MAE ¼
3:2060:08 lg m�3: These values are all within one

standard deviation of the analogous values using the
full dataset (Figure 3) suggesting very little sensitivity
of the MLR model to randomized subsetting of the
input data. This establishes the robustness of the MLR
model for use as a correction methodology.

The PA-II housing includes additional IoT devices
to measure RH and T as well as the second particle
counter (sensor B) as a way to monitor internal con-
sistency with PA-II sensor A PM2.5, and all data are
reported/archived online alongside the secondary
number concentration data. When PA-II RH and T
are compared with the ambient RH and T measured
by the weather station at the Remount measurement
station (Figure S6), a simple linear regression suggests
that while most of the variability about the dependent
variable is explained by a linear model, there is a sig-
nificant high bias in T measured by PA-II and low
bias of RH relative to the weather station data. Likely,
these biases arise from the proximity of the IoT sen-
sors for RH and T being located within the plastic cap
that also contains the two particle sensors and WiFi
transmitter. T is responding to ambient T but then
elevated by about 25% on average (or about 6�C) due
to the waste heat of the other IoT devices.
Analogously, RH is biased low by about 16% because
the T is elevated. The PA-II heats and dries the air
(lowers the RH) in the sample chamber relative to the

Figure 3. Comparison of hourly uncorrected PA-II PM2.5 ver-
sus BAM observed PM2.5 (gray) and corrected PA-II PM2.5 ver-
sus BAM observed PM2.5 (purple). Gray and purple lines are
the simple linear regression of the gray circles and purple
dots, respectively. Statistics included are the RMS and MAE for
the uncorrected and corrected (MLR) data, and the number of
data points (N) in the regression.
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ambient conditions, but fortunately the bias is system-
atic. The MLR model compiled using RH and T from
the PA-II (Figure S7) produces strong results (Figure
S8), but with different fit coefficients (Figure S9). The
PM2.5 data from PA-II sensor B are linearly related
to the PA-II PM2.5 data from sensor A that this study
focuses on (e.g., Figure 3), so any differences between
the particle sensors are accounted for in the MLR
model coefficients with no loss in overall accuracy of
the correction (Figure S10). We discuss these MLR
results using different predictands and predic-
tors below.

4. Discussion

Correcting PA-II PM2.5 data to best match BAM is
strongly dependent on the linear bias of PA-II relative
to the reference values, but we also show that ambient
RH and, to a lesser degree, ambient T play a role.
Physically, this is consistent with considerations of the
aerosol size distribution response to varying RH con-
ditions (Hegg, Larson, and Yuen 1993; Magi and
Hobbs 2003; Petters and Kreidenweis 2007) relative to
the range of particle sizes that are detectable with the
microelectronics of the PA-II. PA-II only slightly
heats the sampled air relative to ambient conditions
(Figure S6) as opposed to reducing RH to a controlled
value (Kotchenruther and Hobbs 1998; Reid et al.
2005). This, we suggest, has consequences in precisely

which part of the particle size distribution the PA-II
is counting from. Water mass that condenses on a
particle causes each to swell to a larger diameter,
including particles that are less than the lowest detect-
able diameter of the PA-II of 0:3 lm: This region of
the aerosol size distribution transitions from the
Accumulation mode (diameters of about 0:1� 2 lm)
to the Aitken mode (particles with diameters ranging
from about 0:02� 0:2 lm) and ultrafine mode (par-
ticles with diameters less than 0:1 lm) (Posner and
Pandis 2015; Seinfeld and Pandis 2016). Numerous
field studies that measure the aerosol size distribution
show that Aitken and ultrafine modes typically con-
tain far greater numbers of particles than the
Accumulation mode of the size distribution. As water
condenses onto sub-Accumulation model particles,
they can swell to well over 100–200% of their dry
diameter depending on the solubility (Gao et al. 2003;
Koehler et al. 2006; Kreidenweis et al. 2005; Magi and
Hobbs 2003; Magi et al. 2005). This is often referred
to as a humidification factor or hygroscopic growth
factor (Hegg et al. 1997) and is part of, for example,
the monitoring suite for global aerosol observation
networks (Sherman et al. 2015).

The protocol for heating the air sample to reduce
RH requires a meticulously designed sampling system
(Sherman et al. 2015) that is beyond the needs of
most citizen scientists using air monitors such as the
PA-II. However, there are repeated instances in

Figure 4. RMS error compared with BAM PM2.5 reference data for uncorrected PA-II (gray triangles), MLR corrected PA-II from this
study (blue circles), and linear correction from University of Utah study (red squares). Figures show RMS as a function of (a) ambi-
ent RH and (b) ambient T, and then the percent improvement in RMS as a function of (c) ambient RH and (d) ambient T resulting
from this study (blue circles) and from the U. Utah correction equation on the Purple Air website (red squares).
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literature related to low-cost sampling systems that
allude to the confounding role of RH in assessing
comparisons of PM2.5 (Holstius et al. 2014; Snyder
et al. 2013; Sousan et al. 2016; Woodall et al. 2017),
speaking to the need for explicitly considering RH.
On the other hand, a recent review of literature
related to low-cost PM2.5 monitoring points to stud-
ies that suggest it is unclear whether RH plays a role
in the values reported by low-cost monitors (Rai et al.
2017). Even more recently, however, field studies that
specifically consider RH (Carvlin et al. 2017; Crilley
et al. 2018; Zamora et al. 2019) agree that low-cost
PM2.5 monitoring improves when RH is explicitly
included in correction methods. Our field results
strongly suggest that RH is a factor that must be con-
sidered in the analysis of PA-II data, and perhaps any
low-cost PM2.5 monitoring device.

We show that an MLR model using either collo-
cated weather station data (Figure 3) or the PA-II
internally monitored RH data (along with reference
PM2.5 data) provides a sound method to correct the
PA-II hourly PM2.5 data. Specifically, the RMS and

MAE values for uncorrected PA-II PM2.5 improve by
about 45% after the correction methods are applied
regardless of which RH and T data are used. The first
preference is to use ambient RH and T (Figure S5),
but if these are unavailable (because, for example, a
dedicated weather station is not deployed), then a
viable option is to use the RH and T measured intern-
ally by the PA-II. The PA-II RH is biased low and
PA-II T is biased high relative to ambient (Figure S6)
but the offset is linear and systematic, allowing for a
different but equally applicable set of MLR fit coeffi-
cients (Figure S9). The key element of correcting PA-
II PM2.5 data is an available reference PM2.5, which
ideally would be collocated or at least located in the
same region where the chemical composition of the
particles is roughly similar.

A key finding of this study emerges from most of
the sampling occurring at moderate to high levels of
ambient RH and across a wide range of ambient T
(Figure S3). This provided a basis for developing a
correction method that incorporates RH and T vari-
ability, and is entirely consistent with a recent lab

Figure 5. Monthly averaged RMS values calculated relative to reference PM2.5 from BAM using (a) Uncorrected PA-II PM2.5 (gray)
and MLR corrected PA-II PM2.5 (dark blue) data, and (b) monthly averaged ambient RH.
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study of how the PA-II particle sensors responded to
hydrophilic and hydrophobic aerosols under high RH
conditions (Zamora et al. 2019). For our field results,
when RMS is calculated for different ranges of RH
and T, our data show that RMS at high RH is about
80% greater than RMS at low RH (Figure 4a), and
about 45% greater at high T than low T (Figure 4b).
The MLR model accounts for this, and the correction
method results in an over 50% reduction RMS at RH
> 80%, versus closer to a 30% reduction at RH <

60% (Figure 4c). The effect of T variability on RMS is
less pronounced (Figure 4d), partly because our sam-
ple location in North Carolina has high ambient RH
throughout the year. The effect of ambient T variabil-
ity on the correction of PA-II data may become more
important in locations that experience low to moder-
ate ambient RH, although recent field evaluation
(Zamora et al. 2019) showed that the PA-II particle
sensors were relatively stable over a wide range of
ambient T.

An additional point that we show in Figure 4 is the
comparison of our MLR correction model with the
simple linear regression correction model available on
the Purple Air website and labeled as “University of
Utah.” The so-called UUtah correction (as of August
2018 on the Purple Air Website; see Figure S11) is
PM2:5UUtah ¼ 0:778�PM2:5PA�II þ 2:65 so we apply
that correction to our data and find that while the
simple linear regression does improve the accuracy
relative to BAM reference PM2.5 (i.e., RMS) by about
18%, there is a major departure for higher RH values
(Figure 4c). Our MLR correction, which incorporates
RH and T, decreases RMS by over 50% for RH >

80%, while the UUTah correction decreases RMS by
less than 20%. The simple linear regression may be
somewhat effective in low RH air spaces, but loses
effectiveness in air spaces with moderate to high sea-
sonal RH. This is important in the USA, for example,
since essentially the central and eastern USA all
experience moderate to high RH for most of the year.
Not surprisingly, the simple linear regression produces
similar improvements for T and RH (Figure 4c and

d), but the effect of RH is much more pronounced in
our sample location.

Our data and results also address the question of
the reliability of the PA-II IoT sensor package over
long deployments with no attempted maintenance.
We calculated the monthly averaged RMS values of
uncorrected PA-II data and BAM reference data
(Figure 2), and corrected PA-II and BAM data (Figure
3) and show this in Figure 5. Initial examination of
the RMS for uncorrected PA-II data (Figure 5a) would
suggest considerable variability in the performance of
the PA-II device with RMS ranging from 5:4�
9:0 lg m�3 (mean of 7:261:3 lg m�3). However,
after applying the MLR correction that accounts for
RH variability (Figure 5b), the RMS ranges from
3:4 to 4:9 lg m�3 (mean of 4:160:4 lg m�3). Thus,
for the climatologically humid summer months in
North Carolina, our MLR model approach shows that
ambient RH variability is accounted for, and that the
accuracy of the PA-II device remains nearly constant
(within 10%) over a 16-month field deployment and
no specific maintenance.

Provided a suitable reference PM2.5 dataset is
available, either with collocation or with a nearby sta-
tion, then many of our methods are immediately gen-
eralizable to other PA-IIs currently deployed most
densely in the USA but also in other locations around
the world. The first generalizable finding is that we
show that RH and T can and should be accounted for
in any linear regression correction (Figure 4). If ambi-
ent RH and T are not measured, then the second gen-
eralizable finding is that we verified that the RH and
T reported by the PA-II device itself is a viable alter-
native since the offsets relative to ambient RH and T
(due to physical design of the PA-II) are linear
(Figure S6) and can be directly incorporated in the
MLR model (Figure S7) with little loss in accuracy
improvements. Third, we also showed that the second
particle sensor (“sensor B”) in the PA-II system is an
equally viable measurement of PM2.5 (Figure S10).

Noting these choices, we derived MLR fit coeffi-
cients for four cases: (1) PA-II particle sensor A using

Table 1. The MLR fit coefficients (Equation (1)) using different predictors and predictands.
MLR predictors BAM, WxRH, WxT BAM, WxRH, WxT BAM, PARH, PAT BAM, PARH, PAT
MLR predictand PA-II PM2.5 A PA-II PM2.5 B PA-II PM2.5 A PA-II PM2.5 B

a0 �25:5561:87 �8:2861:94 �14:2061:76 3:2061:83
a1 1:2560:01 1:3460:01 1:2860:01 1:3660:01
a2 0:09960:003 0:11160:003 0:13060:004 0:14260:004
a3 0:07260:006 0:01160:007 0:03260:006 �0:02860:006

Note: For the predictors, “BAM” is the BAM 1022 PM2.5, “WxRH” is the weather station RH, “WxT” is the weather station
ambient T, “PARH” is the RH reported by the PA-II, “PAT” is the T reported by the PA-II, “PA-II PM2.5 A” is the PM2.5
reported by sensor A in the PA-II, and “PA-II PM2.5 B” is the PM2.5 reported by sensor B in the PA-II. The a0 coefficient is
the constant, while a1; a2; and a3 refer to the coefficients associated with the listed predictors.
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weather station RH and T, (2) PA-II particle sensor B
using weather station RH and T, (3) PA-II sensor A
using PA-II RH and T, and (4) PA-II sensor B using
PA-II RH and T. The MLR fit coefficients for each
case are listed in Table 1. The form of the regression
model is the same as Equation (1), but each uses dif-
ferent inputs. The first case is the basis for Figure 3,
so a comparison of how the correction varies as a
function of the input is what we present here.

Figure 6 shows the effect of each of the corrections
as a percent difference, difference, and a comparison
with the first column (sensor A with weather station
data). In row 1, the color scale tends towards cooler
colors (blues) when the corrected PM2.5 is less than
the uncorrected PM2.5, which is by far the dominant
pattern in all corrections due to the high bias relative
to the reference PM2.5. Similarly, row 2 has orange-
red colors where corrected PM2.5 is greater than
uncorrected PM2.5, but for the most part, the cor-
rected PM2.5 is less than uncorrected. Row 3 com-
pares the magnitude of one correction with the
correction method in the first column. Warmer colors
in this row indicate that the correction method in the
first column (using BAM PM2.5, and RH and T from
the weather station as predictors of predictand PA-II
sensor A PM2.5) reduces the PM2.5 more than the
correction in the column itself. Thus, columns 2–4
show that those correction equations reduce

uncorrected PM2.5 more than the correction equation
in column 1.

One important result from Figure 6 is how the cor-
rection method developed using PM2.5 from sensor A
compares with sensor B. In columns 1 and 2 in
Figure 6, row 3 shows that result by simply examining
the difference in the corrected PM2.5. Recalling that
the MLR is based largely on reported (uncorrected)
PM2.5 less than 40 lg m�3 and RH greater than
40%; the overall difference when using data from the
two particle sensors is largely within 3 lg m�3: When
using the PA-II RH and T data, columns 3 and 4
show that the magnitude of the correction using sen-
sor A and weather station RH and T is always less by
about 0� 4 lg m�3 which is due mainly to the fact
that the PA-II RH is biased low and T is biased high
relative to ambient RH and T (Figure S6).

The different MLR corrections together indicate
that, to within uncertainty, the reported PA-II PM2.5
can be corrected to be closer to a reference PM2.5.
Broad applicability of the values in Table 1 remains to
be tested in other regions and may vary due to differ-
ence in the dominant chemical composition of the
particles (Malm et al. 2004). Varying chemical com-
position could change the physical and optical proper-
ties of the particles as well as the hygroscopicity
(Zamora et al. 2019), but it is unclear what the overall
effect would be on the corrections discussed in this

Figure 6. The strength of the MLR correction as a function of relative humidity and the input PM2.5. Columns show different cor-
rection equations based on (1) PA-II particle sensor A using weather station RH and T, (2) PA-II particle sensor B using weather sta-
tion RH and T, (3) PA-II sensor A using PA-II RH and T, and (4) PA-II sensor B using PA-II RH and T. Rows (top to bottom) show
the percent difference (%) of corrected PM2.5 from uncorrected, the actual difference (lg m�3), and the difference of the correc-
tion in the column from the correction in column 1 (lg m�3).
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study. The most direct application of our results
would be for PA-II sensors in regions similar to ours,
but evaluating the consistency of the correction with
other collocation studies will be the best way to
understand the broader implications. The methods in
our study, however, should be adaptable to any collo-
cation or quasi-collocation study.

5. Conclusions

The PA-II IoT network has provided a massive data-
set for air quality scientists and stakeholder commun-
ities, and offers a way to understand the microscale
within any air space, urban or otherwise. While the
accuracy of the IoT devices is less than a maintained
FEM device such as the BAM 1022, our correction
method shows that hourly corrected PM2.5 data from
the PA-II is accurate to within 3� 4 lg m�3 and sug-
gests that IoT technology is indeed paving a path
towards a transformational dataset that would compli-
ment (but not replace) the existing regulatory moni-
toring network (Kumar et al. 2015; Morawska et al.
2018; Snyder et al. 2013). Our study is limited to
hourly PM2.5 less than about 40� 50 lg m�3; so a
key scientific and stakeholder advance would be a
dedicated multi-season PA-II or IoT collocation in a
polluted air space. This would help understand any
potential nonlinearities in the bias between reference
PM2.5 and PA-II at higher PM2.5 concentrations.
Developing IoT technology for monitoring gaseous
pollutants and/or ultrafine particle counts is currently
beyond IoT capabilities, but would be a key engineer-
ing-based advance that would certainly increase the
utility of IoT for a broad range of communities pro-
vided a detailed multi-season collocation study
is undertaken.
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