Phys1101 - Introductory Physics 1
Phys1101 - Introductory Physics 1
College of Liberal Arts & Sciences

  • Introduction
  • Lecture 01
  • Lecture 02
    • Lecture 2, Part 1: Announcements
    • Lecture 2, Part 2: Units
    • Lecture 2, Part 3: Vector Introduction
    • Lecture 2, Part 4: Adding Vectors Graphically
    • Lecture 2, Part 5: Vector Addition Examples
    • Lecture 2, Part 6: Vector Component Introduction
    • Lecture 2, Part 7: Trigonometry
  • Lecture 03
    • Lecture 3, Part 1: Introduction
    • Lecture 3, Part 2: Where Were We
    • Lecture 3, Part 3: Vector Components in Detail
    • Lecture 3, Part 4: Scalar Component Description
    • Lecture 3, Part 5: Example of Finding Scalar Components
    • Lecture 3, Part 6: Scalar Component Addition
    • Lecture 3, Part 7: Scalar Addition Example
    • Lecture 3, Part 8: Motion Diagrams
  • Lecture 04
    • Lecture 4, Part 1: Introduction
    • Lecture 4, Part 2: Where Were We
    • Lecture 4, Part 3: Location Location Location …
    • Lecture 4, Part 4: How Fast ??? What Direction ???
    • Lecture 4, Part 5: Speeding Up? Slowing Down?
    • Lecture 4, Part 6: What Happens at a Turning Point?
  • Lecture 05
    • Lecture 5, Part 01: Introduction
    • Lecture 5, Part 02: Where Were We
    • Lecture 5, Part 03: Big Picture:  1D Kinematics
    • Lecture 5, Part 04: Kinematic Problem Solving Steps
    • Lecture 5, Part 05: Example 1
    • Lecture 5, Part 06: Example 2
    • Lecture 5, Part 07: Example 3
    • Lecture 5, Part 08: Free Fall
    • Lecture 5, Part 09: Free Fall and Kinematic Equations
    • Lecture 5, Part 10: Example 4
    • Lecture 5, Part 11: Example 5
  • Lecture 06
    • Lecture 6, Part 1: Introduction
    • Lecture 6, Part 2: Where Were We
    • Lecture 6, Part 3: Reading Quiz
    • Lecture 6, Part 4: Graph Basics
    • Lecture 6, Part 5: Practice Makes Perfect…
    • Lecture 6, Part 6: The Tangent Line
  • Lecture 07
    • Lecture 7, Part 1: Introduction
    • Lecture 7, Part 2: Where Were We
    • Lecture 7, Part 3: 2D Motion Diagrams
    • Lecture 7, Part 4: Trajectories
    • Lecture 7, Part 5: Why Work With Components…
    • Lecture 7, Part 6: Key Vectors in 2D
    • Lecture 7, Part 7: Watching 2D Motion
    • Lecture 7, Part 8: Dropping Versus Firing…
  • Lecture 08
    • Lecture 8, Part 1: Introduction
    • Lecture 8, Part 2: Where Were We
    • Lecture 8, Part 3: 2D Kinematic Problems:  The Big Picture
    • Lecture 8, Part 4: 2D Kinematic Problem Solving Steps
    • Lecture 8, Part 5: Example – Part a
    • Lecture 8, Part 6: Example – Part b
    • Lecture 8, Part 7: Your Turn
  • Lecture 09
    • Lecture 9, Part 1: Introduction
    • Lecture 9, Part 2: Where Were We
    • Lecture 9, Part 3: What is Special About Projectile Motion?
    • Lecture 9, Part 4: Example Part a
    • Lecture 9, Part 5: Example Part b
    • Lecture 9, Part 6: Example Part c
    • Lecture 9, Part 7: Your Turn
  • Lecture 10
    • Lecture 10, Part 1: Introduction
    • Lecture 10, Part 2: Where Were We
    • Lecture 10, Part 3: Dynamics:  Why Does Velocity Change?
    • Lecture 10, Part 4: Physical Interpretation of Newton’s Laws
    • Lecture 10, Part 5: What is a Force?
    • Lecture 10, Part 6: Mathematics of Newton’s 2nd Law
  • Lecture 11
    • Lecture 11, Part 1: Introduction
    • Lecture 11, Part 2: Where Were We
    • Lecture 11, Part 3: Free Body Diagram and Vector Nature of Newton’s 2nd Law
    • Lecture 11, Part 4: Common Forces:  Weight
    • Lecture 11, Part 5: Common Forces:  Tension
    • Lecture 11, Part 6: Common Forces:  Normal Force
    • Lecture 11, Part 7: Common Forces:  Friction
    • Lecture 11, Part 8: Problem Solving Steps
    • Lecture 11, Part 9: Example
  • Lecture 12
    • Lecture 12, Part 1: Introduction
    • Lecture 12, Part 2: Where Were We
    • Lecture 12, Part 3: Example 1
    • Lecture 12, Part 4: Example 2
    • Lecture 12, Part 5: Example 3
  • Lecture 13
    • Lecture 13, Part 1: Introduction and Where Were We?
    • Lecture 13, Part 2: Why/When Do We Need Newton’s Third Law?
    • Lecture 13, Part 3: Newton’s 3rd Law
    • Lecture 13, Part 4: Changes To Our Problem-Solving Steps
    • Lecture 13, Part 5: Example 1
    • Lecture 13, Part 6: Ropes and Pulleys
    • Lecture 13, Part 7: Example 2
    • Lecture 13, Part 8: Your Turn
  • Lecture 14
    • Lecture 14, Part 01: Introduction
    • Lecture 14, Part 02: Where Were We ?
    • Lecture 14, Part 03: Uniform Circular Motion:  What You Need To Know
    • Lecture 14, Part 04: Example 1
    • Lecture 14, Part 05: Example 2
    • Lecture 14, Part 06: Example 3
    • Lecture 14, Part 07: Optional Roller Coaster Example
    • Lecture 14, Part 08: Satellite Example
    • Lecture 14, Part 09: The Universal Law of Gravitation
    • Lecture 14, Part 10: Satellite Example Continued
  • Lecture 15
    • Lecture 15, Part 1: Introduction and Where Were We?
    • Lecture 15, Part 2: Energy Conservation:  The Basics
    • Lecture 15, Part 3: How Do You Calculate the Net Work?
    • Lecture 15, Part 4: New Problem Solving Steps
    • Lecture 15, Part 5: Example 1
    • Lecture 15, Part 6: Example 2
    • Lecture 15, Part 7: Last Example
    • Lecture 15, Part 8: Final Quiz Questions…
  • Lecture 16
    • Lecture 16, Part 1: Introduction and Where Were We?
    • Lecture 16, Part 2: Defining Our New “Energy Conservation Starting Equation”
    • Lecture 16, Part 3: Defining Mechanical Energy
    • Lecture 16, Part 4: New Problem Solving Steps
    • Lecture 16, Part 5: First Example
    • Lecture 16, Part 6: Second Example
    • Lecture 16, Part 7: Last Example
    • Lecture 16, Part 8: Redo Example From Last Lecture
  • Lecture 17
    • Lecture 17, Part 1: Lecture
  • Lecture 18
    • Lecture 18, Part 1: Introduction and Where Were We?
    • Lecture 18, Part 2: Momentum Change of a Single Object
    • Lecture 18, Part 3: Conservation of Momentum
  • Lecture 19
    • Lecture 19, Part 1: Introduction and Where Were We?
    • Lecture 19, Part 2: Let’s Start With Another Example
    • Lecture 19, Part 3: Elastic Collisions
    • Lecture 19, Part 4: Remaining Quiz Questions
  • Lecture 20
    • Lecture 20, Part 1: Introduction and Where Were We?
    • Lecture 20, Part 2: Rotational Kinematics:  The Basics
    • Lecture 20, Part 3: Examples
  • Lecture 21
    • Lecture 21, Part 1: Introduction and Where Were We?
    • Lecture 21, Part 2: Describing Motion ALONG the Circular Path…
    • Lecture 21, Part 3: Examples
    • Lecture 21, Part 4: Rolling Motion
  • Lecture 22
    • Lecture 22, Part 1: Introduction and Where Were We?
    • Lecture 22, Part 2: A Net Torque Causes Angular Acceleration
    • Lecture 22, Part 3: Torque Example
    • Lecture 22, Part 4: Equilibrium Example
    • Lecture 22, Part 5: Moment of Inertia
    • Lecture 22, Part 6: Non-Equilibrium Example
    • Lecture 22, Part 7: Another Example
  • Lecture 23
    • Lecture 23, Part 1: Introduction and Where Were We?
    • Lecture 23, Part 2: The Basics of Oscillatory Motion
    • Lecture 23, Part 3: Hooke’s Law
    • Lecture 23, Part 4: Kinematics of Simple Harmonic Motion
    • Lecture 23, Part 5: Example
  • Lecture 24
    • Lecture 24, Part 1: Lecture
  • Lecture 25
    • Lecture 25, Part 1: Introduction
    • Lecture 25, Part 2: The Basics of Wave Motion
    • Lecture 25, Part 3: Motion of a Particle on a Wave
    • Lecture 25, Part 4:  Motion of The Wave Crest
    • Lecture 25, Part 5: Examples
Lecture 23 » Lecture 23, Part 5: Example

Lecture 23, Part 5: Example

https://youtu.be/-XlwZFI-lB4

PHYS 1101: Lecture Twenty-Three, Part Five

Okay, let’s put these ideas together in a last example. The problem reads, “I’ve got a computer that has to be used in a satellite and it has to be able to withstand accelerations up to 25 times acceleration due to gravity.” That’s a lot. I need to be able to test to see whether it meets the specification. If I just dropped my computer or threw it off a cliff, it would only accelerate at 1 g. I need to test 25 gs and see if it holds up.

So here’s what they do. They bolt this computer to a frame and they’re going to vibrate it back and forth. They’re going to subject it to simple harmonic motion, oscillating it back and forth about some equilibrium point. This is going to be my positive x direction, and they can oscillate it back and forth with a frequency of 9.5 Hz. Given that information, what’s the minimum amplitude of vibration that I need in this test in order to simulate this 25 times g as being my maximum acceleration?

They’re asking for an amplitude of vibration. That’s the variable A. I can picture that I’m looking at this computer as though it’s attached to a spring, and I’ve plucked this spring or this system so it’s oscillating back and forth. I need to know if the frequency is 9.5 Hz, what amplitude do I need in order that I achieve this acceleration. Well, the acceleration is the largest out at the turning points, out at the two extremes where this computer has to whip around, turn around to then move in the opposite direction. Let me draw that on here for you. Right here and right here, I have the maximum acceleration values.

How big is that? Well, the analysis I went through just above says my maximum acceleration for simple harmonic motion is set by the amplitude times Omega2. I want to solve for A. I know what this is. This has to be 25 times the acceleration due to gravity. 25 times g. 25 times 9.8 meters per second2. What’s Omega? That’s the last thing that I need. If I get a number for this, I’ll be set. A will just be this number divided by Omega2.

If you go back to our relationships, I defined for you that the frequency is cycles per second. That’s equivalent to 1 over the period. Well, what’s the period? That was related to the angular frequency, remember? If you look back at that previous equation, Omega is set by 2π divided by the period. So I can rewrite this. Maybe then it will be clearer if I just write this as 2π times 1 over the period.

Maybe from that you recognize 1 over the period. 1 over the period, that’s equivalent to f. I’m going to make that substitution because that’s a quantity I know. So this is equivalent to 2π times the frequency. Omega is 2π times the frequency. So let me plug in those numbers and let’s get a number for Omega. Omega then is 2π times the frequency. I need to multiply 2π then times my 9.5 Hz. 2π times 9.5 Hz gives me 59.8, and then the units that I have here now are radians per second.

Okay? So now I have a value for Omega. Let’s go back to our final equation, the equation that defines our maximum acceleration in terms of the amplitude and Omega2. Amax is equal to the amplitude, the variable I want times Omega2. Just do a little algebra and rearrange that. My amplitude then has to be Amax, which is 25 times g divided by Omega2. Plug in numbers for that and A is 25 times my 9.8, and then I have to divide by 59.8 radians per second2. When you multiply that out I end up with 0.069 meters. That’s a very small, small amplitude. That’s about 7 centimeters. If you know how big a centimeter is, there’s about 2.5 centimeters in an inch. So that’s about less than 3 inches is the distance, the amplitude of this oscillation motion. If I just go several inches on either side at about 10 cycles per second frequency I end up with a huge acceleration at these turning points of almost 25 g. So that’s the answer to this problem. And that brings us to the end of lecture 20.

Skip to toolbar
  • Log In