Phys1101 - Introductory Physics 1
Phys1101 - Introductory Physics 1
College of Liberal Arts & Sciences

  • Introduction
  • Lecture 01
  • Lecture 02
    • Lecture 2, Part 1: Announcements
    • Lecture 2, Part 2: Units
    • Lecture 2, Part 3: Vector Introduction
    • Lecture 2, Part 4: Adding Vectors Graphically
    • Lecture 2, Part 5: Vector Addition Examples
    • Lecture 2, Part 6: Vector Component Introduction
    • Lecture 2, Part 7: Trigonometry
  • Lecture 03
    • Lecture 3, Part 1: Introduction
    • Lecture 3, Part 2: Where Were We
    • Lecture 3, Part 3: Vector Components in Detail
    • Lecture 3, Part 4: Scalar Component Description
    • Lecture 3, Part 5: Example of Finding Scalar Components
    • Lecture 3, Part 6: Scalar Component Addition
    • Lecture 3, Part 7: Scalar Addition Example
    • Lecture 3, Part 8: Motion Diagrams
  • Lecture 04
    • Lecture 4, Part 1: Introduction
    • Lecture 4, Part 2: Where Were We
    • Lecture 4, Part 3: Location Location Location …
    • Lecture 4, Part 4: How Fast ??? What Direction ???
    • Lecture 4, Part 5: Speeding Up? Slowing Down?
    • Lecture 4, Part 6: What Happens at a Turning Point?
  • Lecture 05
    • Lecture 5, Part 01: Introduction
    • Lecture 5, Part 02: Where Were We
    • Lecture 5, Part 03: Big Picture:  1D Kinematics
    • Lecture 5, Part 04: Kinematic Problem Solving Steps
    • Lecture 5, Part 05: Example 1
    • Lecture 5, Part 06: Example 2
    • Lecture 5, Part 07: Example 3
    • Lecture 5, Part 08: Free Fall
    • Lecture 5, Part 09: Free Fall and Kinematic Equations
    • Lecture 5, Part 10: Example 4
    • Lecture 5, Part 11: Example 5
  • Lecture 06
    • Lecture 6, Part 1: Introduction
    • Lecture 6, Part 2: Where Were We
    • Lecture 6, Part 3: Reading Quiz
    • Lecture 6, Part 4: Graph Basics
    • Lecture 6, Part 5: Practice Makes Perfect…
    • Lecture 6, Part 6: The Tangent Line
  • Lecture 07
    • Lecture 7, Part 1: Introduction
    • Lecture 7, Part 2: Where Were We
    • Lecture 7, Part 3: 2D Motion Diagrams
    • Lecture 7, Part 4: Trajectories
    • Lecture 7, Part 5: Why Work With Components…
    • Lecture 7, Part 6: Key Vectors in 2D
    • Lecture 7, Part 7: Watching 2D Motion
    • Lecture 7, Part 8: Dropping Versus Firing…
  • Lecture 08
    • Lecture 8, Part 1: Introduction
    • Lecture 8, Part 2: Where Were We
    • Lecture 8, Part 3: 2D Kinematic Problems:  The Big Picture
    • Lecture 8, Part 4: 2D Kinematic Problem Solving Steps
    • Lecture 8, Part 5: Example – Part a
    • Lecture 8, Part 6: Example – Part b
    • Lecture 8, Part 7: Your Turn
  • Lecture 09
    • Lecture 9, Part 1: Introduction
    • Lecture 9, Part 2: Where Were We
    • Lecture 9, Part 3: What is Special About Projectile Motion?
    • Lecture 9, Part 4: Example Part a
    • Lecture 9, Part 5: Example Part b
    • Lecture 9, Part 6: Example Part c
    • Lecture 9, Part 7: Your Turn
  • Lecture 10
    • Lecture 10, Part 1: Introduction
    • Lecture 10, Part 2: Where Were We
    • Lecture 10, Part 3: Dynamics:  Why Does Velocity Change?
    • Lecture 10, Part 4: Physical Interpretation of Newton’s Laws
    • Lecture 10, Part 5: What is a Force?
    • Lecture 10, Part 6: Mathematics of Newton’s 2nd Law
  • Lecture 11
    • Lecture 11, Part 1: Introduction
    • Lecture 11, Part 2: Where Were We
    • Lecture 11, Part 3: Free Body Diagram and Vector Nature of Newton’s 2nd Law
    • Lecture 11, Part 4: Common Forces:  Weight
    • Lecture 11, Part 5: Common Forces:  Tension
    • Lecture 11, Part 6: Common Forces:  Normal Force
    • Lecture 11, Part 7: Common Forces:  Friction
    • Lecture 11, Part 8: Problem Solving Steps
    • Lecture 11, Part 9: Example
  • Lecture 12
    • Lecture 12, Part 1: Introduction
    • Lecture 12, Part 2: Where Were We
    • Lecture 12, Part 3: Example 1
    • Lecture 12, Part 4: Example 2
    • Lecture 12, Part 5: Example 3
  • Lecture 13
    • Lecture 13, Part 1: Introduction and Where Were We?
    • Lecture 13, Part 2: Why/When Do We Need Newton’s Third Law?
    • Lecture 13, Part 3: Newton’s 3rd Law
    • Lecture 13, Part 4: Changes To Our Problem-Solving Steps
    • Lecture 13, Part 5: Example 1
    • Lecture 13, Part 6: Ropes and Pulleys
    • Lecture 13, Part 7: Example 2
    • Lecture 13, Part 8: Your Turn
  • Lecture 14
    • Lecture 14, Part 01: Introduction
    • Lecture 14, Part 02: Where Were We ?
    • Lecture 14, Part 03: Uniform Circular Motion:  What You Need To Know
    • Lecture 14, Part 04: Example 1
    • Lecture 14, Part 05: Example 2
    • Lecture 14, Part 06: Example 3
    • Lecture 14, Part 07: Optional Roller Coaster Example
    • Lecture 14, Part 08: Satellite Example
    • Lecture 14, Part 09: The Universal Law of Gravitation
    • Lecture 14, Part 10: Satellite Example Continued
  • Lecture 15
    • Lecture 15, Part 1: Introduction and Where Were We?
    • Lecture 15, Part 2: Energy Conservation:  The Basics
    • Lecture 15, Part 3: How Do You Calculate the Net Work?
    • Lecture 15, Part 4: New Problem Solving Steps
    • Lecture 15, Part 5: Example 1
    • Lecture 15, Part 6: Example 2
    • Lecture 15, Part 7: Last Example
    • Lecture 15, Part 8: Final Quiz Questions…
  • Lecture 16
    • Lecture 16, Part 1: Introduction and Where Were We?
    • Lecture 16, Part 2: Defining Our New “Energy Conservation Starting Equation”
    • Lecture 16, Part 3: Defining Mechanical Energy
    • Lecture 16, Part 4: New Problem Solving Steps
    • Lecture 16, Part 5: First Example
    • Lecture 16, Part 6: Second Example
    • Lecture 16, Part 7: Last Example
    • Lecture 16, Part 8: Redo Example From Last Lecture
  • Lecture 17
    • Lecture 17, Part 1: Lecture
  • Lecture 18
    • Lecture 18, Part 1: Introduction and Where Were We?
    • Lecture 18, Part 2: Momentum Change of a Single Object
    • Lecture 18, Part 3: Conservation of Momentum
  • Lecture 19
    • Lecture 19, Part 1: Introduction and Where Were We?
    • Lecture 19, Part 2: Let’s Start With Another Example
    • Lecture 19, Part 3: Elastic Collisions
    • Lecture 19, Part 4: Remaining Quiz Questions
  • Lecture 20
    • Lecture 20, Part 1: Introduction and Where Were We?
    • Lecture 20, Part 2: Rotational Kinematics:  The Basics
    • Lecture 20, Part 3: Examples
  • Lecture 21
    • Lecture 21, Part 1: Introduction and Where Were We?
    • Lecture 21, Part 2: Describing Motion ALONG the Circular Path…
    • Lecture 21, Part 3: Examples
    • Lecture 21, Part 4: Rolling Motion
  • Lecture 22
    • Lecture 22, Part 1: Introduction and Where Were We?
    • Lecture 22, Part 2: A Net Torque Causes Angular Acceleration
    • Lecture 22, Part 3: Torque Example
    • Lecture 22, Part 4: Equilibrium Example
    • Lecture 22, Part 5: Moment of Inertia
    • Lecture 22, Part 6: Non-Equilibrium Example
    • Lecture 22, Part 7: Another Example
  • Lecture 23
    • Lecture 23, Part 1: Introduction and Where Were We?
    • Lecture 23, Part 2: The Basics of Oscillatory Motion
    • Lecture 23, Part 3: Hooke’s Law
    • Lecture 23, Part 4: Kinematics of Simple Harmonic Motion
    • Lecture 23, Part 5: Example
  • Lecture 24
    • Lecture 24, Part 1: Lecture
  • Lecture 25
    • Lecture 25, Part 1: Introduction
    • Lecture 25, Part 2: The Basics of Wave Motion
    • Lecture 25, Part 3: Motion of a Particle on a Wave
    • Lecture 25, Part 4:  Motion of The Wave Crest
    • Lecture 25, Part 5: Examples
Lecture 14 » Lecture 14, Part 05: Example 2

Lecture 14, Part 05: Example 2

https://youtu.be/gfV-ZMAEZKQ

PHYS 1101: Lecture Fourteen, Part Five

For this next exercise, I want you to watch this little movie, because now we’re going to look at circular motion inside of a tube. So the motion’s very complicated as the ball rolls around the inside of the tube, but for a brief second near the end there it’s going to rattle around. I want us to consider a ball rolling around right at the bottom here along the inside of a tube.

So our scope is really — let’s wait till this ball settles down. It’s in slow motion. Right now we see it circling around the inside of that hoop.

That’s the scope. Let’s think about that motion. Here I’ve got a snapshot already set for you. Right at this instant, the object was, the ball was going around on the inside of this ring, this tube. At that instant, what’s the direction of the acceleration vector? That’s question 16.

Here’s a larger picture of this. I tried to find a better animation. This is the best I could find, but in real life you can imagine giving this ball a push and having it follow around inside this ring. So follow this circular path.

So in either of these scenarios, when the ball gets right here, picture a side view and what direction is the acceleration vector at that instant? That’s question 16.

Question 17 is what would be the free body diagram for that scenario?

Let me make this smaller here for you so you can see it on the same page. As this ball is spinning around inside this ring, what would be the right free body diagram to describe that motion? What’s different? It’s undergoing very similar motion to a hockey puck attached to a string that’s going around in circular motion, but obviously the nature of what’s in contact with the ball or this object is different now. There’s no longer a rope pulling it, but I do have the edge of this ring now that it’s riding against. What’s the right free body diagram?

Question 18 is this acceleration that you’ve identified the direction of, this what some people call the centripetal acceleration, a, the force that’s responsible for it — what is it? So from your free body diagram, what’s the force that’s consistent with the direction of the acceleration?

And how would you describe that force and what it exerts on the ball? Is it a push now as compared to the pull that it was before? Or is it a pull and a push? How do they compare? The string when the string was acting on the ball compared to now, when it’s a ring?

Skip to toolbar
  • Log In