Phys1101 - Introductory Physics 1
Phys1101 - Introductory Physics 1
College of Liberal Arts & Sciences

  • Introduction
  • Lecture 01
  • Lecture 02
    • Lecture 2, Part 1: Announcements
    • Lecture 2, Part 2: Units
    • Lecture 2, Part 3: Vector Introduction
    • Lecture 2, Part 4: Adding Vectors Graphically
    • Lecture 2, Part 5: Vector Addition Examples
    • Lecture 2, Part 6: Vector Component Introduction
    • Lecture 2, Part 7: Trigonometry
  • Lecture 03
    • Lecture 3, Part 1: Introduction
    • Lecture 3, Part 2: Where Were We
    • Lecture 3, Part 3: Vector Components in Detail
    • Lecture 3, Part 4: Scalar Component Description
    • Lecture 3, Part 5: Example of Finding Scalar Components
    • Lecture 3, Part 6: Scalar Component Addition
    • Lecture 3, Part 7: Scalar Addition Example
    • Lecture 3, Part 8: Motion Diagrams
  • Lecture 04
    • Lecture 4, Part 1: Introduction
    • Lecture 4, Part 2: Where Were We
    • Lecture 4, Part 3: Location Location Location …
    • Lecture 4, Part 4: How Fast ??? What Direction ???
    • Lecture 4, Part 5: Speeding Up? Slowing Down?
    • Lecture 4, Part 6: What Happens at a Turning Point?
  • Lecture 05
    • Lecture 5, Part 01: Introduction
    • Lecture 5, Part 02: Where Were We
    • Lecture 5, Part 03: Big Picture:  1D Kinematics
    • Lecture 5, Part 04: Kinematic Problem Solving Steps
    • Lecture 5, Part 05: Example 1
    • Lecture 5, Part 06: Example 2
    • Lecture 5, Part 07: Example 3
    • Lecture 5, Part 08: Free Fall
    • Lecture 5, Part 09: Free Fall and Kinematic Equations
    • Lecture 5, Part 10: Example 4
    • Lecture 5, Part 11: Example 5
  • Lecture 06
    • Lecture 6, Part 1: Introduction
    • Lecture 6, Part 2: Where Were We
    • Lecture 6, Part 3: Reading Quiz
    • Lecture 6, Part 4: Graph Basics
    • Lecture 6, Part 5: Practice Makes Perfect…
    • Lecture 6, Part 6: The Tangent Line
  • Lecture 07
    • Lecture 7, Part 1: Introduction
    • Lecture 7, Part 2: Where Were We
    • Lecture 7, Part 3: 2D Motion Diagrams
    • Lecture 7, Part 4: Trajectories
    • Lecture 7, Part 5: Why Work With Components…
    • Lecture 7, Part 6: Key Vectors in 2D
    • Lecture 7, Part 7: Watching 2D Motion
    • Lecture 7, Part 8: Dropping Versus Firing…
  • Lecture 08
    • Lecture 8, Part 1: Introduction
    • Lecture 8, Part 2: Where Were We
    • Lecture 8, Part 3: 2D Kinematic Problems:  The Big Picture
    • Lecture 8, Part 4: 2D Kinematic Problem Solving Steps
    • Lecture 8, Part 5: Example – Part a
    • Lecture 8, Part 6: Example – Part b
    • Lecture 8, Part 7: Your Turn
  • Lecture 09
    • Lecture 9, Part 1: Introduction
    • Lecture 9, Part 2: Where Were We
    • Lecture 9, Part 3: What is Special About Projectile Motion?
    • Lecture 9, Part 4: Example Part a
    • Lecture 9, Part 5: Example Part b
    • Lecture 9, Part 6: Example Part c
    • Lecture 9, Part 7: Your Turn
  • Lecture 10
    • Lecture 10, Part 1: Introduction
    • Lecture 10, Part 2: Where Were We
    • Lecture 10, Part 3: Dynamics:  Why Does Velocity Change?
    • Lecture 10, Part 4: Physical Interpretation of Newton’s Laws
    • Lecture 10, Part 5: What is a Force?
    • Lecture 10, Part 6: Mathematics of Newton’s 2nd Law
  • Lecture 11
    • Lecture 11, Part 1: Introduction
    • Lecture 11, Part 2: Where Were We
    • Lecture 11, Part 3: Free Body Diagram and Vector Nature of Newton’s 2nd Law
    • Lecture 11, Part 4: Common Forces:  Weight
    • Lecture 11, Part 5: Common Forces:  Tension
    • Lecture 11, Part 6: Common Forces:  Normal Force
    • Lecture 11, Part 7: Common Forces:  Friction
    • Lecture 11, Part 8: Problem Solving Steps
    • Lecture 11, Part 9: Example
  • Lecture 12
    • Lecture 12, Part 1: Introduction
    • Lecture 12, Part 2: Where Were We
    • Lecture 12, Part 3: Example 1
    • Lecture 12, Part 4: Example 2
    • Lecture 12, Part 5: Example 3
  • Lecture 13
    • Lecture 13, Part 1: Introduction and Where Were We?
    • Lecture 13, Part 2: Why/When Do We Need Newton’s Third Law?
    • Lecture 13, Part 3: Newton’s 3rd Law
    • Lecture 13, Part 4: Changes To Our Problem-Solving Steps
    • Lecture 13, Part 5: Example 1
    • Lecture 13, Part 6: Ropes and Pulleys
    • Lecture 13, Part 7: Example 2
    • Lecture 13, Part 8: Your Turn
  • Lecture 14
    • Lecture 14, Part 01: Introduction
    • Lecture 14, Part 02: Where Were We ?
    • Lecture 14, Part 03: Uniform Circular Motion:  What You Need To Know
    • Lecture 14, Part 04: Example 1
    • Lecture 14, Part 05: Example 2
    • Lecture 14, Part 06: Example 3
    • Lecture 14, Part 07: Optional Roller Coaster Example
    • Lecture 14, Part 08: Satellite Example
    • Lecture 14, Part 09: The Universal Law of Gravitation
    • Lecture 14, Part 10: Satellite Example Continued
  • Lecture 15
    • Lecture 15, Part 1: Introduction and Where Were We?
    • Lecture 15, Part 2: Energy Conservation:  The Basics
    • Lecture 15, Part 3: How Do You Calculate the Net Work?
    • Lecture 15, Part 4: New Problem Solving Steps
    • Lecture 15, Part 5: Example 1
    • Lecture 15, Part 6: Example 2
    • Lecture 15, Part 7: Last Example
    • Lecture 15, Part 8: Final Quiz Questions…
  • Lecture 16
    • Lecture 16, Part 1: Introduction and Where Were We?
    • Lecture 16, Part 2: Defining Our New “Energy Conservation Starting Equation”
    • Lecture 16, Part 3: Defining Mechanical Energy
    • Lecture 16, Part 4: New Problem Solving Steps
    • Lecture 16, Part 5: First Example
    • Lecture 16, Part 6: Second Example
    • Lecture 16, Part 7: Last Example
    • Lecture 16, Part 8: Redo Example From Last Lecture
  • Lecture 17
    • Lecture 17, Part 1: Lecture
  • Lecture 18
    • Lecture 18, Part 1: Introduction and Where Were We?
    • Lecture 18, Part 2: Momentum Change of a Single Object
    • Lecture 18, Part 3: Conservation of Momentum
  • Lecture 19
    • Lecture 19, Part 1: Introduction and Where Were We?
    • Lecture 19, Part 2: Let’s Start With Another Example
    • Lecture 19, Part 3: Elastic Collisions
    • Lecture 19, Part 4: Remaining Quiz Questions
  • Lecture 20
    • Lecture 20, Part 1: Introduction and Where Were We?
    • Lecture 20, Part 2: Rotational Kinematics:  The Basics
    • Lecture 20, Part 3: Examples
  • Lecture 21
    • Lecture 21, Part 1: Introduction and Where Were We?
    • Lecture 21, Part 2: Describing Motion ALONG the Circular Path…
    • Lecture 21, Part 3: Examples
    • Lecture 21, Part 4: Rolling Motion
  • Lecture 22
    • Lecture 22, Part 1: Introduction and Where Were We?
    • Lecture 22, Part 2: A Net Torque Causes Angular Acceleration
    • Lecture 22, Part 3: Torque Example
    • Lecture 22, Part 4: Equilibrium Example
    • Lecture 22, Part 5: Moment of Inertia
    • Lecture 22, Part 6: Non-Equilibrium Example
    • Lecture 22, Part 7: Another Example
  • Lecture 23
    • Lecture 23, Part 1: Introduction and Where Were We?
    • Lecture 23, Part 2: The Basics of Oscillatory Motion
    • Lecture 23, Part 3: Hooke’s Law
    • Lecture 23, Part 4: Kinematics of Simple Harmonic Motion
    • Lecture 23, Part 5: Example
  • Lecture 24
    • Lecture 24, Part 1: Lecture
  • Lecture 25
    • Lecture 25, Part 1: Introduction
    • Lecture 25, Part 2: The Basics of Wave Motion
    • Lecture 25, Part 3: Motion of a Particle on a Wave
    • Lecture 25, Part 4:  Motion of The Wave Crest
    • Lecture 25, Part 5: Examples
Lecture 08 » Lecture 8, Part 7: Your Turn

Lecture 8, Part 7: Your Turn

https://youtu.be/kr0r7HSbuXs

PHYS 1101: Lecture Eight, Part Seven

Okay. Now I want you to do those steps. So what I’ve done is taken another problem that’s different, but somewhat similar. And I have a collection of quiz questions here for you that have you gently reading this problem carefully and stepping through those problem solving steps. So for each quiz question, I have a little snapshot here to the side to remind you of what step, problem solving step this quiz question corresponds to.

In other words, this question’s helping you think about this visualization and what’s going on.

So I have a couple of questions that help you visualize the problem and of course, pause the video at any time to read it carefully.

These first two questions ask about the initial velocity vector direction. And then the final velocity vector.

And then putting that together, question six. What then represents the best curve trajectory for that spaceship in this case?

Then for problem solving step number two, I’ve given you just an axis here and defined an origin and suggest that you go through putting these vectors and this information on your graph. So take advantage of this graph, this real estate. Take your time and try to do that. Put that information on the graph.

Then I have some quiz questions which ask you to go through the exercise for step three in solving the problem. Find the components of the vectors, as many as you can. Do your Trig. You should be able to answer questions seven through ten by finding these velocity components.

Then question 11 and 12 really ties in with problem solving step two again, where I hope you have given some thought to not just initial and final velocity vectors, but what direction must your acceleration vector point in order for the velocity vector to change the way it does. What does ax and ay have to be?

Remember again, these are the change in the x velocity, the change in the y velocity every second. What do those have to be to cause the trajectory that you have mapped out?

And then make your list of knowns. I think it is a good idea to separate them into the x variables and the y variables. You can really cleanly go up and compare them to the two equations.

Quiz question 13 and 14 ask you about part of those steps. What variable and value do you actually need to get a number for, etc?

And then there’s step five, actually doing the math and getting your answer. And I’ve got a couple of questions for you in that regard. What equation is best to calculate these various things that you’ll need to calculate for this problem?

Okay? And 17 and 18, actually have you doing the calculation. Getting a real number for these. For all of these that you can just use three significant digits. You can type those into WebAssign. That should be fine. That’s for all the components I have you calculate along the way here.

And then the last question answers the problem. It’s the final answer that we’re asked to provide. What’s the magnitude of the spaceship’s acceleration during this 25 second interval?

And that brings us to the end of lecture eight.

Don’t hesitate to use the discussion board with questions or email me, and I’ll try to get to you as much as I can.

Skip to toolbar
  • Log In