Phys1101 - Introductory Physics 1
Phys1101 - Introductory Physics 1
College of Liberal Arts & Sciences

  • Introduction
  • Lecture 01
  • Lecture 02
    • Lecture 2, Part 1: Announcements
    • Lecture 2, Part 2: Units
    • Lecture 2, Part 3: Vector Introduction
    • Lecture 2, Part 4: Adding Vectors Graphically
    • Lecture 2, Part 5: Vector Addition Examples
    • Lecture 2, Part 6: Vector Component Introduction
    • Lecture 2, Part 7: Trigonometry
  • Lecture 03
    • Lecture 3, Part 1: Introduction
    • Lecture 3, Part 2: Where Were We
    • Lecture 3, Part 3: Vector Components in Detail
    • Lecture 3, Part 4: Scalar Component Description
    • Lecture 3, Part 5: Example of Finding Scalar Components
    • Lecture 3, Part 6: Scalar Component Addition
    • Lecture 3, Part 7: Scalar Addition Example
    • Lecture 3, Part 8: Motion Diagrams
  • Lecture 04
    • Lecture 4, Part 1: Introduction
    • Lecture 4, Part 2: Where Were We
    • Lecture 4, Part 3: Location Location Location …
    • Lecture 4, Part 4: How Fast ??? What Direction ???
    • Lecture 4, Part 5: Speeding Up? Slowing Down?
    • Lecture 4, Part 6: What Happens at a Turning Point?
  • Lecture 05
    • Lecture 5, Part 01: Introduction
    • Lecture 5, Part 02: Where Were We
    • Lecture 5, Part 03: Big Picture:  1D Kinematics
    • Lecture 5, Part 04: Kinematic Problem Solving Steps
    • Lecture 5, Part 05: Example 1
    • Lecture 5, Part 06: Example 2
    • Lecture 5, Part 07: Example 3
    • Lecture 5, Part 08: Free Fall
    • Lecture 5, Part 09: Free Fall and Kinematic Equations
    • Lecture 5, Part 10: Example 4
    • Lecture 5, Part 11: Example 5
  • Lecture 06
    • Lecture 6, Part 1: Introduction
    • Lecture 6, Part 2: Where Were We
    • Lecture 6, Part 3: Reading Quiz
    • Lecture 6, Part 4: Graph Basics
    • Lecture 6, Part 5: Practice Makes Perfect…
    • Lecture 6, Part 6: The Tangent Line
  • Lecture 07
    • Lecture 7, Part 1: Introduction
    • Lecture 7, Part 2: Where Were We
    • Lecture 7, Part 3: 2D Motion Diagrams
    • Lecture 7, Part 4: Trajectories
    • Lecture 7, Part 5: Why Work With Components…
    • Lecture 7, Part 6: Key Vectors in 2D
    • Lecture 7, Part 7: Watching 2D Motion
    • Lecture 7, Part 8: Dropping Versus Firing…
  • Lecture 08
    • Lecture 8, Part 1: Introduction
    • Lecture 8, Part 2: Where Were We
    • Lecture 8, Part 3: 2D Kinematic Problems:  The Big Picture
    • Lecture 8, Part 4: 2D Kinematic Problem Solving Steps
    • Lecture 8, Part 5: Example – Part a
    • Lecture 8, Part 6: Example – Part b
    • Lecture 8, Part 7: Your Turn
  • Lecture 09
    • Lecture 9, Part 1: Introduction
    • Lecture 9, Part 2: Where Were We
    • Lecture 9, Part 3: What is Special About Projectile Motion?
    • Lecture 9, Part 4: Example Part a
    • Lecture 9, Part 5: Example Part b
    • Lecture 9, Part 6: Example Part c
    • Lecture 9, Part 7: Your Turn
  • Lecture 10
    • Lecture 10, Part 1: Introduction
    • Lecture 10, Part 2: Where Were We
    • Lecture 10, Part 3: Dynamics:  Why Does Velocity Change?
    • Lecture 10, Part 4: Physical Interpretation of Newton’s Laws
    • Lecture 10, Part 5: What is a Force?
    • Lecture 10, Part 6: Mathematics of Newton’s 2nd Law
  • Lecture 11
    • Lecture 11, Part 1: Introduction
    • Lecture 11, Part 2: Where Were We
    • Lecture 11, Part 3: Free Body Diagram and Vector Nature of Newton’s 2nd Law
    • Lecture 11, Part 4: Common Forces:  Weight
    • Lecture 11, Part 5: Common Forces:  Tension
    • Lecture 11, Part 6: Common Forces:  Normal Force
    • Lecture 11, Part 7: Common Forces:  Friction
    • Lecture 11, Part 8: Problem Solving Steps
    • Lecture 11, Part 9: Example
  • Lecture 12
    • Lecture 12, Part 1: Introduction
    • Lecture 12, Part 2: Where Were We
    • Lecture 12, Part 3: Example 1
    • Lecture 12, Part 4: Example 2
    • Lecture 12, Part 5: Example 3
  • Lecture 13
    • Lecture 13, Part 1: Introduction and Where Were We?
    • Lecture 13, Part 2: Why/When Do We Need Newton’s Third Law?
    • Lecture 13, Part 3: Newton’s 3rd Law
    • Lecture 13, Part 4: Changes To Our Problem-Solving Steps
    • Lecture 13, Part 5: Example 1
    • Lecture 13, Part 6: Ropes and Pulleys
    • Lecture 13, Part 7: Example 2
    • Lecture 13, Part 8: Your Turn
  • Lecture 14
    • Lecture 14, Part 01: Introduction
    • Lecture 14, Part 02: Where Were We ?
    • Lecture 14, Part 03: Uniform Circular Motion:  What You Need To Know
    • Lecture 14, Part 04: Example 1
    • Lecture 14, Part 05: Example 2
    • Lecture 14, Part 06: Example 3
    • Lecture 14, Part 07: Optional Roller Coaster Example
    • Lecture 14, Part 08: Satellite Example
    • Lecture 14, Part 09: The Universal Law of Gravitation
    • Lecture 14, Part 10: Satellite Example Continued
  • Lecture 15
    • Lecture 15, Part 1: Introduction and Where Were We?
    • Lecture 15, Part 2: Energy Conservation:  The Basics
    • Lecture 15, Part 3: How Do You Calculate the Net Work?
    • Lecture 15, Part 4: New Problem Solving Steps
    • Lecture 15, Part 5: Example 1
    • Lecture 15, Part 6: Example 2
    • Lecture 15, Part 7: Last Example
    • Lecture 15, Part 8: Final Quiz Questions…
  • Lecture 16
    • Lecture 16, Part 1: Introduction and Where Were We?
    • Lecture 16, Part 2: Defining Our New “Energy Conservation Starting Equation”
    • Lecture 16, Part 3: Defining Mechanical Energy
    • Lecture 16, Part 4: New Problem Solving Steps
    • Lecture 16, Part 5: First Example
    • Lecture 16, Part 6: Second Example
    • Lecture 16, Part 7: Last Example
    • Lecture 16, Part 8: Redo Example From Last Lecture
  • Lecture 17
    • Lecture 17, Part 1: Lecture
  • Lecture 18
    • Lecture 18, Part 1: Introduction and Where Were We?
    • Lecture 18, Part 2: Momentum Change of a Single Object
    • Lecture 18, Part 3: Conservation of Momentum
  • Lecture 19
    • Lecture 19, Part 1: Introduction and Where Were We?
    • Lecture 19, Part 2: Let’s Start With Another Example
    • Lecture 19, Part 3: Elastic Collisions
    • Lecture 19, Part 4: Remaining Quiz Questions
  • Lecture 20
    • Lecture 20, Part 1: Introduction and Where Were We?
    • Lecture 20, Part 2: Rotational Kinematics:  The Basics
    • Lecture 20, Part 3: Examples
  • Lecture 21
    • Lecture 21, Part 1: Introduction and Where Were We?
    • Lecture 21, Part 2: Describing Motion ALONG the Circular Path…
    • Lecture 21, Part 3: Examples
    • Lecture 21, Part 4: Rolling Motion
  • Lecture 22
    • Lecture 22, Part 1: Introduction and Where Were We?
    • Lecture 22, Part 2: A Net Torque Causes Angular Acceleration
    • Lecture 22, Part 3: Torque Example
    • Lecture 22, Part 4: Equilibrium Example
    • Lecture 22, Part 5: Moment of Inertia
    • Lecture 22, Part 6: Non-Equilibrium Example
    • Lecture 22, Part 7: Another Example
  • Lecture 23
    • Lecture 23, Part 1: Introduction and Where Were We?
    • Lecture 23, Part 2: The Basics of Oscillatory Motion
    • Lecture 23, Part 3: Hooke’s Law
    • Lecture 23, Part 4: Kinematics of Simple Harmonic Motion
    • Lecture 23, Part 5: Example
  • Lecture 24
    • Lecture 24, Part 1: Lecture
  • Lecture 25
    • Lecture 25, Part 1: Introduction
    • Lecture 25, Part 2: The Basics of Wave Motion
    • Lecture 25, Part 3: Motion of a Particle on a Wave
    • Lecture 25, Part 4:  Motion of The Wave Crest
    • Lecture 25, Part 5: Examples
Lecture 09 » Lecture 9, Part 2: Where Were We

Lecture 9, Part 2: Where Were We

https://youtu.be/4eLTie3i-8U

PHYS 1101: Lecture Nine, Part Two

In the previous lecture we just went through our problem solving steps, and I worked an example for you and then had you walk through solving a two dimensional trajectory problem. I can best summarize the steps that we have to go through to do that in this fashion of having three main components.

When we read these problems in the real world, we’re going to have a scope to a problem, a beginning, and an end. And during that time interval the problem has to have a constant acceleration. This delta-v vector has to be the same direction in length from start to finish.

What happens is I’ll start off with some initial speed at an initial angle that defines an initial velocity, v0, and then the clock ticks on. That velocity changes because of the acceleration to leave me with the final velocity, a final speed, and a final direction. That’s what your eye’s drawn to. That’s what you are going to read in the problem. It’s the real world description.

In order to do the mathematics to solve the physics behind the problem, we need to take these vectors, and we need to strip out their components, so to speak. We need to pull out all of the x components of those vectors and the y components of those three vectors. The beauty of that is these components then we can treat as one dimensional motion as the components. The parameters are important for one dimensional motion.

Being in one dimension now the scalar components can have a sign associated with them that keeps track of the direction of the vectors. The interesting comparison or the connection between the horizontal and the vertical parts is that the time variable is the same for both. The horizontal motion is occurring at the same time as the vertical motion.

This was the same case back when we did one dimensional problems where we may have had two objects undergoing motion at the same time where time was the same variable in those two sets of equations.

So we do our mathematics here, these two one dimensional pictures, noting the time is a common variable. We set our clock to 0 at the initial instant, and that final time, the duration of the problem, that t shows up in these equations and in these equations. Once we work with these equations and we’ve chosen, we’ve focused on specific variables here that we have to solve for, those variables then we have to use to answer the real problem that was posed.

Often that real problem has us tying the mathematics back to the real world or translating the mathematics back into what’s happening. It may ask us for an initial speed, the initial magnitude of this velocity or a final speed or the magnitude of the acceleration.  These are hypotenuse pieces of information.

For example, to get this initial speed, I have to use the Pythagorean theorem where this and this are the two sides of a right triangle. And this, the speed, is the hypotenuse.

Here’s our reading quiz for this section. We just had to read Section 3.3 on projectile motion for this lecture. Question 3: With the standard axis definition positive y being up and positive x to the right, when we’re working with projectile motion what’s the value of Ax? For all projectiles this will be true. Is it A) positive, B) negative, C) 0, or D) does it depend on some details of that particular problem?

Question 4: With the same standard axis definitions in projectile motion, the value of Ay is A) positive, B) negative, C) 0, or D) does it depend on the details?

Skip to toolbar
  • Log In