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Abstract 

Infectious diseases have complex transmission cycles, and effective public health responses 

require the ability to monitor outbreaks in a timely manner. Space-time statistics facilitate the 

discovery of disease dynamics including rate of spread and seasonal cyclic patterns, but are 

computationally demanding, especially for datasets of increasing size, diversity and availability. 

High-performance computing reduces the effort required to identify these patterns, however 

heterogeneity in the data must be accounted for. We develop an adaptive space-time domain 

decomposition approach for parallel computation of the space-time kernel density. We apply our 

methodology to individual reported dengue cases from 2010 to 2011 in the city of Cali, 

Colombia. The parallel implementation reaches significant speedup compared to sequential 

counterparts. Density values are visualized in an interactive 3D environment, which facilitates 

the identification and communication of uneven space-time distribution of disease events. Our 

framework has the potential to enhance the timely monitoring of infectious diseases.   

 

Keywords: dengue fever, parallel computing, space-time analysis 

  



2 
 

1. Introduction  

1.1. Detecting Disease Outbreaks 

 Infectious diseases have complex transmission cycles, and an effective public health response 

requires the ability to monitor and analyze outbreaks under critical space-time conditions (Eisen 

and Eisen 2011). Space-time analytics and geovisualization are particularly attractive to analyze 

spatial data with a time stamp (Jacquez, Greiling, and Kaufmann 2005; Rogerson and Yamada 

2008; Robertson et al. 2010; Kulldorff 2010), as they facilitate the discovery of inherent patterns 

(rate of disease spread, cyclic pattern, direction, intensity and risk of diffusion to new regions). 

The identification of a cluster of illness provides critical intelligence for response; timely and 

focused monitoring is thus a critical element to reduce the burdens associated with diseases. The 

detection of space­time clusters can be computationally demanding, and this issue is exacerbated 

with spatiotemporal datasets of increasing size, diversity and availability (Grubesic, Wei, and 

Murray 2014; Robertson et al. 2010). Accelerated processing capabilities are therefore critical to 

reduce the computational effort when conducting space-time analysis on epidemiological 

datasets, and particularly so at the individual level. However, careful spatiotemporal domain 

decomposition is often necessary to prevent workload imbalances, thereby reducing computing 

inefficiency. Heterogeneity in the data has to be accounted for when designing new algorithms 

capable of implementing parallel strategies and integrating time along spatial dimension. 

 A series of statistical approaches has been used to detect spatial or spatiotemporal clusters of 

infectious diseases. The Knox test for space-time interaction evaluates the presence of a space-

time cluster at given spatial and temporal distances (Kulldorff and Hjalmars 1999). Knox’ 

method is limited due to its arbitrary definition of closeness (Robertson et al. 2010), and the 

Mantel’s test (Mantel 1967) incorporates the notion of distance decay in that nearby pairs of 

events are more important than distant pairs. The space-time Ripley’s K function evaluates the 

magnitude of space-time clustering at different spatial and temporal scales (Bailey and Gatrell 

1995). The spatial scan statistic (Kulldorff 1997) identifies the most likely disease clusters in a 

study area by maximizing the likelihood that disease cases are located within a set of concentric 

circles that are moved across the study area. In a space-time context, the scan statistic uses a 

cylinder instead of a circle, where the vertical axis represents time (Kulldorff et al. 2005).  

 In addition to scan statistics, autocorrelation-based methods have been widely used for 

identifying clusters in epidemiology (Mclafferty 2015). Global methods, such as Moran’s I 

(Moran 1950), tell us whether clustering of similar attribute values is present within the study 

area, while its local version (local indicators of spatial association, LISA) identifies locus and 

shape of these clusters. Finally, kernel density estimation (KDE) techniques are used to generate 

continuous surfaces of disease intensity (Carlos et al. 2010; Delmelle, Zhu, et al. 2014). The 

temporal extension of the KDE is known as the space-time kernel density estimation (STKDE) 

and essentially maps a volume of disease intensity along the space-time domain (Nakaya and 

Yano 2010). However, the above methods are computationally intensive (Robertson et al. 2010), 

especially when Monte Carlo simulations are used for significance testing, and when the 

temporal dimension is added, resulting in long execution times when compared to their planar 

counterparts (Costa, Assunção, and Kulldorff 2012). Expedited processing capabilities are 

critical for analyzing spatiotemporal epidemiological data of increasing size, diversity and 

availability. High-performance and parallel computing offer the capacity to solve 

computationally demanding problems in limited time. 

 



3 
 

1.2. Parallel Computing 

 Parallel computing is based on a divide and conquer strategy that breaks down a problem into 

sub-problems that are small enough to be handled computationally. Then, the solutions to the 

sub-problems are aggregated to form a solution for the original problem (Wilkinson and Allen 

2004). The general approach for parallel computing is to decompose a dataset into smaller 

subsets, for example, along the spatial or temporal dimension, distribute the resulting 

subdomains to multiple processors for parallel processing, and finally collect and reassemble the 

results (Ding and Densham 1996). However, to prevent workload imbalance among processors 

and, therefore, processing inefficiency, the spatially explicit characteristics of the data often need 

to be accounted for (Wang and Armstrong 2003). While random or uniform data can be 

decomposed by non-adaptive regular tessellations, doing so for clustered datasets results in 

heterogeneous subdomains as they contain uneven quantities of data (Ding and Densham 1996). 

Such subdomains exhibit variation in computational intensities (Wang and Armstrong 2009) 

resulting in workload imbalance and inefficiency. Recursive domain decomposition methods, 

such as quadtrees, have been widely used for mitigating workload imbalance, especially for 

spatially heterogeneous data (Turton 2003; Wang and Armstrong 2003).  

Despite the recent popularity of incorporating time dimension in geographic models (Kwan 

and Neutens, 2014), the recursive decomposition of spatiotemporal datasets has been 

insufficiently addressed in the literature. Most of the work reported is based on static spatial 

domain decomposition. For example, spatial domain decomposition has been used for parallel 

computation of the Gi*(d) statistic (Armstrong and Marciano 1995; Wang, Cowles, and 

Armstrong 2008). Liu and colleagues compared non-adaptive with adaptive domain 

decomposition for parallel processing, and found that adaptive decomposition often leads to 

increase in workload balance (Liu et al. 2010). Spatial domain decomposition, including both 

regular (block) and ordered (cyclic; taking into account heterogeneity in spatial data) strategies, 

has been applied to parallelize the AMOEBA algorithm for detection of spatial clustering 

patterns (Widener, Crago, and Aldstadt 2012). Static spatial domain decomposition has been 

used to compute space-time kernel density (STKDE) in parallel on reported dengue fever cases 

(Delmelle, Dony, et al. 2014). The latest efforts of accelerating clustering algorithms include the 

use of general-purpose graphics processing units (GPGPU), for instance, to select optimal 

bandwidths for kernel density estimation (Andrzejewski, Gramacki, and Gramacki 2013), and to 

compute the Ripley’s K function on massive spatial point data (Tang, Feng, and Jia 2014).   

 

1.3. Objectives 

In this article, we develop a parallel computing approach based on adaptive space-time 

domain decomposition for the acceleration of the space-time kernel density estimation (STKDE), 

a computationally demanding space-time statistic. We apply our methodology on an 

epidemiological dataset of reported dengue fever cases in the city of Cali, Colombia for the years 

2010 and 2011. We implement a parallel computing approach to conduct the space-time K 

function test, on both observed cases and population adjusted Monte Carlo simulations. Optimal 

space-time K-function parameters serve as inputs for the STKDE. Based on the K-function 

analysis, we choose the spatial and temporal bandwidths for STKDE.  
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2. Materials and Methods 

2.1 Data and Study Area 

 The city of Santiago de Cali (from here on referred to as Cali) is located in the valley of the 

Cauca River; limited to the east by the river and to the west by a mountain system. It has a 

tropical climate with two distinct rainy seasons, from April to July and September to December. 

The yearly average temperature is 26°C (79°F) which results in perfect conditions for the Aedes 

Aegypti mosquito to reproduce (de Cali 2008). The city of Cali with a population of around 2.5 

million people is considered an endemic zone for dengue fever. Similarly to other urban areas in 

the developing world, Cali is characterized by unplanned urbanization (Restrepo 2011). Multiple 

neighborhoods along the river banks to the east of the city are the result of squatter settlements. 

A similar phenomenon takes place in the western foothills. Based on data from the health 

municipality of the city of Cali (Cali 2010), until 2009 three severe dengue outbreaks occurred: 

1995, 2002, and 2005. However, two more outbreaks occurred in both 2010 and 2013. 

  The dengue fever dataset (Figure 1) corresponds to cases reported to the “Sistema de 

Vigilancia en Salud Pública” (SIVIGILA, English: Public health surveillance system) for the city 

of Cali during 2010 and 2011. The system is updated on a daily basis with records of individuals 

that have been diagnosed with dengue fever. The record includes, among others, individual 

information about the patient (e.g. gender, home address and education among others), date of 

diagnosis, symptoms, and final condition. Addresses are standardized to a common address 

format, and spelling and other syntactical errors are manually corrected (Delmelle et al. 2013). 

Using the home address of each patient, the data is geocoded and masked to the nearest street 

intersection level to maintain privacy (Kwan, Casas, and Schmitz 2004).  

 In 2010, 9606 were successfully geocoded (11760 reported cases, or 81.7%), whereas in 

2011, 1562 cases were successfully geocoded (1822 reported cases, or 85.7%). The probability 

of a dengue fever case to be successfully reported and geocoded is rather difficult to estimate. 

Access to healthcare facilities for diagnosis is not an issue, as the diagnosis can occur close to 

home in nearby health centers and posts. The geocoding process is more likely to introduce bias 

due to inexistent or poorly documented road infrastructure in squatter settlements, and because 

some individuals (1) choose not to report their home address in order to maintain privacy or (2) 

may only remember an incomplete address that cannot be geocoded. 
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Figure 1 Spatial distribution of geocoded dengue cases from 2010 to 2011 in A and their 

temporal distribution in B. Note that each bar in B represents one month of the year. 

 

2.2 Space-Time Ripley’s K Function 

 To estimate space-time clustering among reported dengue fever cases, we follow a two-step 

approach (see Figure 2 for framework design). First, we conduct a space-time K function 

analysis to evaluate the magnitude of spatial and temporal bandwidths at different scales. We do 

so by comparing the K function values of both observed and population adjusted simulated 

datasets, computed in parallel. Second, we use these bandwidths for spatiotemporal domain 

decomposition, which creates a collection of subdomains that are distributed to multiple CPUs 

(Central Processing Units) for parallel STKDE.     
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Figure 2: Framework of parallel space-time analysis of Dengue fever cases (STKDE: space-time 

kernel density estimation; CPU: central processing unit). 
 

 The space-time Ripley’s K function evaluates the magnitude of space-time clustering 

(random, clustered, or regular) along multiple spatial and temporal scales (Bailey and Gatrell 

1995). It takes into account both the number of points and the distance between them for the 
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quantification of spatiotemporal clustering. It is based on the second-order property (i.e. 

variance) of point events (Dixon 2002) and allows for comparison of point patterns and their 

spatiotemporal structures over multiple scales. Given a specific set of spatial and temporal 

distances, the space-time Ripley’s K function is the expected number of point events within the 

distance ranges divided by the intensity (first-order property) of the point pattern: 

 

 𝐾(𝑑, 𝑡) =  
𝐸(𝑑,𝑡)

𝜆
            (1) 

 

where E(d,t) is the expected number of point events within spatial and temporal lag d and t. The 

spatial and temporal lags form a cylinder with radius d and height t, which is centered on each 

point in the study area/period. λ can be estimated as n/(A*T), where n is the number of points, 

and A is the area of the study region, and T the study period. A*T amounts to the volume of the 

irregular prism that has the study region as its base and the temporal dimension (study period) as 

its height. The space-time Ripley’s K function represents a cumulative distribution of point 

events over distance and time. If a point pattern follows the property of complete spatiotemporal 

randomness (CSTR), we expect K(d,t) = πd2t, where πd2t is the volume of the cylinder defined 

by d and t. For a clustered pattern within spatial and temporal lags d and t, K(d,t) > πd2t; 

otherwise, K(d,t) < πd2t for a regular pattern. The K function can be estimated by the following 

formula: 

 

 𝐾̂(𝑑, 𝑡) =
𝐴∗𝑇

𝑛2
∑ ∑

𝐼𝑖𝑗(𝑑,𝑡)

𝑤𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1          (2) 

 

where Iij(d,t) is a binary function that indicates whether a point j is located within d and t from 

point i. Iij(d,t) = 1, if dij and tij (the spatial and temporal distance between point i and j) are 

shorter or equivalent to d and t; otherwise, Iij(d,t) = 0. wij is a weight function that corrects edge 

effects because cylinders used for counting points within d and t might intersect the boundary of 

the study region/period and therefore, introduce bias. For a thorough discussion of correction 

methods for dealing with edge effects, see (Gabriel 2014; Yamada and Rogerson 2003). In this 

study, we used the isotropic edge correction method, which is the spatiotemporal equivalent of 

Ripley’s circumference method (Ripley 1977).  

 The structural characteristics of a spatiotemporal point pattern can be evaluated by 

comparing 𝐾̂(𝑑, 𝑡) with the volume of the cylinder of radius d and height t, (i.e. πd2t). The K 

function can be transformed to L(d,t), obtaining a benchmark of zero, which allows for direct 

comparison of L across all d and t assessed, using Equation 3: 

 

 𝐿̂(𝑑, 𝑡) =  √
𝐾̂(𝑑,𝑡)

𝜋𝑡
− 𝑑                          (3) 

 

Therefore, a spatiotemporal point pattern within distances d and t is clustered if 𝐿̂(𝑑, 𝑡) > 0. If 

𝐿̂(𝑑, 𝑡) < 0, then the spatiotemporal point pattern is regular within d and t. If 𝐿̂(𝑑, 𝑡) = 0, then 

the pattern conforms to CSTR.   

 We statistically assessed the scale of clustering by finding the spatial and temporal scales at 

which the difference between L-values of the observed cases and those of the upper simulation 

envelope was maximal. Upper and lower envelopes were generated by taking the maximum and 

minimum L-value among 100 population adjusted random datasets for each combination of 
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spatial and temporal bandwidth. We simulated dengue cases within each barrio (smallest census 

level at which population is reported, n=340 in Cali), according to 2010 population figures. 

Specifically, if a barrio contained 10% of the population, we randomly generated 10% of dengue 

cases within the boundary of the barrio. The temporal signature of each case was chosen between 

the first diagnosed and reported case on January 3rd, 2010, and the last case on December 31, 

2011. We parallelized the Monte Carlo runs of the space-time Ripley’s K function: each run was 

deployed on an individual processor (the so-called embarrassingly parallel computing; see 

Wilkinson and Allen 2004).  

 The observed point pattern is spatially and temporally inhomogeneous, as the pattern of 

disease incidence reflects both, the density of the population at risk and systematic temporal 

variation due to seasonality and progression of the disease. Approaches to deal with the 

inhomogeneity include decomposition of the study area/period into sub-regions/periods, for 

which the point process is homogeneous (Bolibok 2008). Alternatively, the spatiotemporal 

inhomogeneous K-function (STIK-function) can be used to analyze second-order properties, 

which necessitates estimating first-order intensity, assuming the separability into its spatial- and 

temporal components. Kernel estimation is required for estimating the spatial intensity, where 

the bandwidth is chosen to minimize the estimated mean square error, whereas the temporal 

intensity stipulates a log-linear regression model (Gabriel and Diggle 2009). We intend to 

incorporate the STIK-function in future work. 

2.3 Space-Time Kernel Density Estimation 

 In order to detect spatiotemporal patterns in our data, we use the space-time kernel density, 

which is a temporal extension of the traditional kernel density estimation (KDE) used for 

identifying spatiotemporal patterns of underlying datasets. The density estimates are visualized 

within the space-time cube framework using two spatial (x, y) and a temporal dimension (t) 

(Delmelle, Dony, et al. 2014; Demšar and Virrantaus 2010; Nakaya and Yano 2010).  

 The output is a 3D raster volume where each voxel (volumetric pixel) is assigned a density 

estimate based on the surrounding point data. The space-time density is estimated by Equation 4 

(same notation as Delmelle et al., 2014): 

 

 𝑓(𝑥, 𝑦, 𝑡) =
1

𝑛ℎ𝑠
2ℎ𝑡

∑ 𝑖(𝑑𝑖 < ℎ𝑠 , 𝑡𝑖 < ℎ𝑡)𝑘𝑠 (
𝑥−𝑥𝑖

ℎ𝑠
,

𝑦−𝑦𝑖

ℎ𝑠
) 𝑘𝑡 (

𝑡−𝑡𝑖

ℎ𝑡
)𝑖                      (4) 

 

Density 𝑓(𝑥, 𝑦, 𝑡) of each voxel s with coordinates (x, y, t) is estimated based on neighboring 

data points (xi, yi, ti). Each point located within the neighborhood of the voxel is weighted using   

the spatial and temporal Epanechnikov kernel functions, ks and kt, respectively (the closer the 

data point, the higher the weight)(Epanechnikov 1969). The spatial and temporal distances 

between voxel and data point are given by di and ti respectively. If di and ti are smaller than the 

spatial (hs) and temporal bandwidths (ht) respectively, the indicator function I(di < hs; ti < ht) 

equals 1, otherwise 0. For visualization of STKDE, we set hs and ht to 500 meters and 7 days, 

which was determined preliminary analysis of the space-time K function. We used a 

spatiotemporal voxel-resolution of 100m * 100m * 1 day within our experimental treatments. 

STKDE values are standardized and adjusted for 2010 population density values, which are also 

standardized. 

 The sequential STKDE algorithm has an algorithmic complexity of V*N, where V is the 

number of voxels and N is the number of data points. It is implemented as a nested loop structure 

where the outer loop iterates through the voxels and the inner loop through the data points, 
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calculating the space-time distances for each voxel/point pair and comparing them to the 

bandwidths (Figure 3).  

 

ALGORITHM STKDE(xyzList, hs, ht) 

BEGIN ALGORITHM 

for (xC=xmin;xC<=xmax;xC+xRes):  # for all x-coordinates  

 for (yC=xmin;yC<=ymax;yC+yRes):       # for all y-coordinates 

            for (zC=xmin;zC<=zmax;zC+zRes):           # for all  t-coordinates 

                density = 0.0 

                for xD, yD, zD in xyzList:                            #loop through disease cases                                        

                 if hs >= (xD - xC)^2 + (yD - yC)^2:             #if within spatial bandwidth 

      if ht >= |zD – zC|:                          #if within temporal bandwidth 

        u = (xD-xC) / hs 

           v = (yD-yC) / hs 

        w = (zD-zC) / ht 

       density += 0.5 * π * (1 – u^2 – v^2) * 0.75 * (1 – w^2) 

END ALGORITHM 

Figure 3: Sequential STKDE algorithm. 

 

2.4 Spatiotemporal Domain Decomposition and Parallel Computing  

 To conduct the parallel STKDE, we implemented the divide and conquer strategy by 

recursively decomposing the dengue fever dataset for subsequent distribution of the resulting 

subdomains to processor queues for concurrent processing (Figure 2). Following the 

methodology described in (Hohl, Delmelle, and Tang 2015), we created subdomains of similar 

computational intensity in order to achieve equal workloads among CPUs. In order to account 

for heterogeneity in the dengue fever dataset, we used recursive spatiotemporal domain 

decomposition, which is a method where the solution to a problem depends on solutions to 

smaller instances of the same problem (Graham 1994). 

 The decomposition algorithm proceeds as follows (Figure 2). The algorithm starts by 

defining the bounding box of the dataset, using the minimum and maximum values of each 

dimension and generates 8 cuboid subdomains by dividing each of the three axes into two equal 

parts. The algorithm then iterates through each subdomain and keeps decomposing recursively 

until no subdomain contains more points than the specified threshold (50 in our paper), as long 

as the ratio between the subdomain volume and the combined subdomain and buffer volume 

stays above 0.1 (to prevent unnecessarily small subdomains). Subdomains containing no points 

are discarded from subsequent processing, which reduces the computational workload and 

execution time regardless of whether parallel computing is used or not. To avoid edge effects in 

the STKDE -which are likely to occur near subdomain boundaries due to the spatial (hs) and 

temporal bandwidth (ht)-, we implemented space-time buffers of distance hs and ht around all 

subdomains. The number of subdomains resulting from decomposition depends on the choice of 

bandwidths. When a data point falls outside a subdomain but inside its buffer, the point is still 

assigned to that subdomain and hence, contributes towards the number of points for comparison 

against the threshold.  Buffers from neighboring subdomains overlap with each other, and data 

points that fall within these areas are assigned to both subdomains. Therefore, a data point can be 

assigned to a maximum of 8 subdomains, which creates considerable data redundancy. To ensure 

workload balance, we define the target load as the cost of the entire computation divided by the 
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number of processors. For each processor, we keep adding from the sequence of subdomains 

obtained from 3D to 1D mapping by space-filling curve (Bader 2012), until the target load is 

reached. Although the number of assigned subdomains may vary among processors, the 

workload remains similar.    

We use a high-performance computing cluster with 32 nodes connected through an 

infiniband network switch (Pfister 2001).  Each computing node has 12 CPUs and 12GBs of 

memory, in total 384 CPUs (Intel Xeon processor with 2.67GHz clock speed) for the computing 

cluster. We use the statistical software R (package: stpp) to conduct the space-time K function 

(Gabriel, Rowlingson, and Diggle 2013), while the STKDE algorithm is implemented in the 

Python environment, and the results visualized in Voxler (Golden Software, Colorado), an 

interactive 3D modelling environment. 

 To evaluate the sensitivity of our parallel approach to kernel bandwidth and the number of 

parallel processors, we conducted multiple experimental treatments using several combinations 

of spatial and temporal bandwidths, and varying numbers of processors. We chose to use 

computing time, speedup and efficiency as metrics to evaluate the parallel computing 

performance of our space-time analysis approach. Both speedup and efficiency are performance 

metrics based on computing time. Speedup (S) is a metric that is based on the ratio of computing 

time from a single CPU (sequential) over that from multiple CPUs in parallel (see equation 6) 

(Wilkinson and Allen 2004). Efficiency (E) is the ratio of speedup value over the number of 

CPUs (see equation 7). 

 

  𝑆 =
𝑇𝑠

𝑇𝑝
                         (6)  

 𝐸 =
𝑆

𝑁
                        (7) 

 

where S is the speedup of our parallel approach. Ts is the sequential computing time and Tp the 

parallel computing time. The theoretical maximal value of speedup is equivalent to the number 

of CPUs used for parallel execution. However, real speedup values are usually lower than the 

theoretical upper limit. The speedup value of a parallel computing algorithm is positively related 

to computing performance: the higher the speedup value, the better the computing performance 

our algorithm has. Speedup and efficiency have been extensively used to evaluate the computing 

performance of parallel algorithms (Wilkinson and Allen 2004). 

3. Results and Discussion 

3.1 Space-time K-function 

 Figure 3 illustrates the difference in L-values (see equation 3) between observed dengue 

fever cases and upper confidence envelope of the population adjusted simulated datasets for the 

entire study area/period. The confidence envelope is constructed based on maximum and 

minimum values of 100 Monte Carlo runs. Clustering of dengue fever cases tends to be strong 

where the difference between observed and simulated values becomes large. This difference is 

positive across all bandwidths (Figure 4),  suggesting that dengue fever cases exhibit clustering 

throughout all scales assessed, and the clustering becomes strong for large spatial- and small 

temporal scales (e.g. hs = 1000m and ht = 1day). With decreasing spatial- and increasing 

temporal bandwidth, the clustering pattern becomes weaker, especially along the spatial 
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dimension. Based on L function results, we chose the bandwidths hs = 500m and ht = 7d for 

STKDE, which corresponds to medium clustering intensity. The total sequential computing time 

for Monte Carlo run of space-time Ripley’s K function is 322 seconds (about 6 minutes). For the 

parallel computing, we deployed each Monte Carlo run on a single processor. This leads to 3.24 

seconds of parallel computing time for 100 Monte Carlo runs.    

 
Figure 4: Difference in L function values between observed data and upper envelope of the 

simulated datasets. 

3.2 Space-Time Kernel Density Visualization 

Space-time kernel density estimates are rendered in Voxler, where each voxel is color-coded 

according to its population adjusted STKDE value. The level of transparency of each of the 

voxel can be adjusted to focus on those regions with higher STKDE values. We reinforce 

clusters of high STKDE values by means of isovolumes which capture the shape of clusters in 

both space and time. Figure 5 summarizes population adjusted STKDE values using a spatial 

bandwidth hs=500m and ht=7days, at a discretization level of 100m*100m*1 day, resulting in 

16,442,664 voxels.  

The space-time distribution of cases is particularly important in the beginning of 2010 and 

exhibits much lower values in 2011 (Figures 2 and 5). We identify several groups of high 

population adjusted STKDE values in 2010; such as cluster 1 directly located to the south of Cali 

River and in the close proximity of Parque de la Cana, an attraction park with swimming pools 

and small ponds (Delmelle et al. 2013). Cluster 2 occurs in the northern part of the city, directly 

to the South of the Cali River, a river flowing through the city, draining into the Cauca River. 
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Clusters 1 and 2 have in common that individuals in those areas tend to live in crowded 

dwellings with poor water supply making them a more vulnerable population (Delmelle et al. 

2013). Cluster 3 is located in the old core of the city, but characterized by a relatively low 

population, which may explain higher population adjusted STKDE values. Clusters (4) and (5) 

are located on a military base with individuals living in a confined space; the shape of the 

clusters is characterized by a small spatial extent but large temporal period. Cluster 6 

 

 

STKDE values for 2011 suggest a decrease of dengue fever cases in the periphery and a 

higher concentration in the center of the city.  

 

Figure 5: Three dimensional visualization of the population adjusted space-time kernel density 

estimates (spatial bandwidth: 500m and temporal bandwidth: 7days). Perspective from the 

Southeast in (a) and from the Southwest in (b). 

3.3 Parallel Computing Performance Analysis 

 Figure 6 illustrates the computing performance of our parallel STKDE method, including 

sequential computing time. Computing time of STKDE algorithm is affected by spatial and 

temporal bandwidths. Large spatial (or temporal) bandwidths require a longer computing effort. 

For example, the treatment for 250 meter of spatial bandwidth and 3 days of temporal bandwidth 

only exhibits a sequential time (Ts) of 2,067 seconds (0.59 hours). However, when the spatial 

bandwidth increases to 2,500 meters and temporal bandwidth to 14 days, computing time 

becomes 40,297 seconds (about 11.19 hours).  The neighborhood search dramatically increases 

when larger spatiotemporal bandwidths are used, suggesting that the STKDE algorithm is 

computationally demanding. When we apply parallel computing solutions, STKDE can be 

accelerated substantially. For example, computing time drops from 11.19 hours down to 244 

seconds (about 4 minutes) when 200 CPUs were used for the treatment with 2,500 meter of 

spatial bandwidth and 14 days of temporal bandwidth.  Correspondingly, the speedup for this 

treatment is 165 (i.e., acceleration for parallel STKDE computation using 200 processors is 165 
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times) and efficiency is 82.5% (Figure 7). Large spatial/temporal bandwidths tend to have high 

parallel computing performance. When spatial bandwidths are small (250 m here), parallel 

computing performance tends to be low when the number of CPUs used is high. This can be 

attributed to the low number of sub-domains decomposed from the spatiotemporal domain 

decomposition algorithm (3,420 subdomains decomposed for 250-m and 14-day spatiotemporal 

bandwidth). Thus, as the number of CPUs becomes large, the number of sub-domains assigned 

to each processor decreases—leading to a higher likelihood of workload imbalance among 

processors, because performance increase is limited to the subdomain that constitutes the largest 

share of the workload, and adding additional processors will not further accelerate the 

computation.  In other words, when we utilize parallel computing to accelerate STKDE, large 

spatiotemporal bandwidths, which requires more computational support, tend to leverage parallel 

computing resources more efficiently.   
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Figure 6: Acceleration performance (execution time and speedup) of space-time kernel density 

estimation algorithm over different spatial- and temporal bandwidths in response to alternative 

numbers of CPUs. Ts is sequential time (using one CPU). 

 
Figure 7: Efficiency of parallel space-time kernel density estimation algorithm over different 

spatial- and temporal bandwidths in response to alternative numbers of CPUs. 

4. Conclusions  
 Infectious diseases can spread very quickly under suitable conditions and timely monitoring 

is thus critical to reduce the risk of potential outbreaks. Space-time statistics facilitate the 

discovery of disease dynamics such as rate of spread and seasonal cyclic patterns, but these 

methods are computationally demanding, especially for large individual level data and at very 

fine resolutions. In this article, we develop an adaptive, space-time domain decomposition for 

parallel computation of the space-time kernel density, a computationally demanding space-time 

statistic. Our decomposition approach accounts for spatiotemporal heterogeneity in the data. We 
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illustrate the benefits of our method on a set of reported dengue cases in an urban environment of 

Colombia for the years 2010 and 2011 (2010 was an outbreak).  

 

The parallel implementation of the STKDE reaches significant speedup compared to 

sequential counterparts. While sequential run may need up to 11 hours for STKDE algorithm, 

our parallel computing approach allows us to obtain STKDE results within minutes. This gives 

us more flexibility and capacity to efficiently and effectively detect the spatiotemporal clustering 

patterns in infectious disease data, represented by dengue fever in this study. Further, space-time 

kernel density estimates are visualized in an interactive 3D environment, which helps reveal 

space-time dengue fever clusters of different shapes and sizes.  

 

Our approach dramatically reduces the computational effort required for the analysis of 

space-time patterns in epidemiological dataset at the individual level. This suggests that, -given a 

limited time budget-, space-time analysis can be conducted (1) at a much finer resolution, (2) for 

larger datasets, and for a (3) greater number of Monte-Carlo simulations, which would increase 

the statistical power of space-time statistics. Our methodology is portable to other individual 

space-time tests (e.g. Knox, Mantel, SaTScan) and areal level (LISA, SaTScan). These 

methodologies (and STKDE) have in common that they rely heavily on costly nearest-neighbor 

search and distance calculations. Our framework decreases this cost by reducing the search space 

and distributes the computation more evenly across several CPUs.      

 

Our future work includes, but is not limited to: 1) applying our parallel approach to other 

space-time disease events; 2) testing other spatiotemporal domain decomposition strategies, 

including the use of k/d-trees or R-trees to reduce algorithm complexity, and to facilitate the 

parallel space-time analysis of disease datasets; 3) extending our approach to areal tests of space-

time clustering, such as the temporal extension of the local Moran’s I statistic and 4) improving 

our statistical methodology by using the spatiotemporal inhomogeneous K-function.  
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