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Transit planners are often faced with a tradeoff between improving accessibility through the addition of
stops while simultaneously increasing efficiency so that destinations can be reached in a reasonable
amount of time. In this paper, we propose the development of an optimization framework integrated
within a Geographical Information System (GIS) for addressing this specific problem. Our proposed mod-
eling framework departs from well-known facility location coverage models by considering both the
impact of walking distance from an individual residential location to a stop and the transit facility attrac-
tiveness (ease to cross, number of destinations served). Integration within a GIS environment is accom-
plished using a simulated annealing heuristic. An example on an inbound urban bus route illustrates the
utility of the approach for transit planning, using model parameters developed in collaboration with local
transit agencies.

Published by Elsevier Ltd.
1. Introduction

Promoting alternative modes of travel is a struggle in today’s
highly competitive but strongly automobile-dominated urban tra-
vel markets (Taaffe, Gauthier, & O’Kelly, 1996). Problems associ-
ated with automobiles, such as congestion and pollution, have
exerted considerable pressure on transportation infrastructure,
especially in urban regions. Socially, people should have access to
public transportation, keeping in mind that public transportation
needs to best serve the population (Bullard, 2003). In recent years
there has been renewed interest in public transit and it continues
to be viewed as an important component of the overall transporta-
tion planning and management of urban regions (Murray, 2003).
The most distinguished advantages of public transit derive from
its unique ability to thrive on high volumes of travel demand con-
centrated in space and time (Pucher, 2004). Another positive char-
acteristic of transit is its potential for serving passenger trips at
lower energy consumption cost and less pollutant emissions per
passenger mile than a private automobile (Garrison & Levinson,
2006; Giuliano, 2004).

Despite the attractive and sustainable attributes of public trans-
portation, ridership continues to decline as a proportion of overall
trips. In the USA, approximately 64.37% of all commuting trips were
made by private automobile in 1980 (19.73% carpool, 6.22% transit),
and increased to around 75.20% in 2000 (13.36% carpool, 4.58%
transit) with transit utilization at about 5% (Taaffe et al., 1996;
Ltd.

elle).
TRB, 2006). Following the annual American Community Survey
(US Census Bureau, 2009), car utilization further increased to
76.1% in 2009 (with a drop to 10% in carpool and 5% in public trans-
portation). The situation is not as severe in large, dense cities with a
well connected transit system. Newman and Kenworthy (1999)
point out that transit use in large cities in the USA was 9.0% in
1990 in comparison to 38.8% in European cities. Buehler (2010)
highlights that European transport policies are usually integrated
with stringent land use development measures, keeping settle-
ments compact. Transit policies and high gasoline prices have
encouraged the use of alternate modes of transportation in Europe,
as public transit is four to six times higher (Pucher & Lefevre, 1996).1

Loose land-use development policies have resulted in a separation of
employment and housing in the USA, known as spatial mismatch
(Blumenberg & Manville, 2004; Preston & McLafferty, 1999).

One way to address spatial mismatch is by expanding the cov-
erage of an existing system (adding more stops and lines), which
may also increase transit utilization since access to the system is
improved. Adding transit stops along a route will increase coverage
of potential riders, but slows down travel speeds, reducing the
number of reachable destinations within a travel budget (Murray
& Wu, 2003). Greater ridership may actually be achieved when
the system is made more efficient, given that faster travel speeds
are preferred (Blumenberg & Manville, 2004; Newman & Kenwor-
thy, 1999) and uncertainty due to traffic congestion and multiple
stops along the way is at a minimum (Murray, Davis, Stimson, &
1 Americans are more generally sensitive to switching modes of transportation
when gasoline prices are increasing (Buehler, 2010; Currie & Phung, 2008).
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Ferreira, 1998). Transit efficiency reflects how quickly a system can
bring people from their transit stop to their destination. Accessibil-
ity of the public transit network is getting individuals from their
system entry point to their system exit location in a reasonable
amount of time (Murray & Wu, 2003; Murray et al., 1998). One
strategy to this conundrum (decreasing travel time and augment-
ing public transit ridership) is to remove redundant stops, while
retaining those stops offering higher levels of service, or make a
route less circuitous (Blumenberg & Manville, 2004). Strategic
transit planning models should be flexible enough to support tran-
sit attractiveness while simultaneously reducing redundancy.

There is no clear consensus on what constitutes a well-located
transit stop, however, the FTA (1996) provides general planning
guidelines that have been echoed by the literature. The FTA
(1996) distinguishes between macro and micro-level criteria in
determining stop placement. For example, macro-level consider-
ations may place an emphasis on particular segments of the popu-
lation who are completely reliant upon transit access such as
lower-income groups (Wells & Thill, in press), or those with mobil-
ity constraints such as the elderly or disabled (Casas, 2007; Church
& Marston, 2003). These considerations deal with the overall equi-
table distribution of public transit. Micro-level or so-called street
side factors include, but are not necessarily limited to, the spacing
between stops, distance to the nearest intersections, presence of
sidewalks, adjacent land use, pedestrian access, and safety con-
cerns (i.e. crosswalks, street lights, or street parking). Such street
side factors are not detached from overall equity concerns as stops
are often designed and placed with the needs of the mobility con-
strained population in mind; walking distances between a stop and
other transit lines should be minimized and the placement of mid-
block stops is discouraged as it forces pedestrians to walk greater
distances to the nearest intersection, thereby placing an extra bur-
den on deprived riders (Hess, in press). Furthermore, stops located
far from an intersection will encourage jaywalking, increasing the
risks and severity of pedestrian/vehicle crashes (FTA, 1996; Hess,
in press; Pulugartha & Vanapalli, 2008; Truong & Somenhalli,
2011). Finally, a stop can also be strategically located when it is
served by multiple routes (O’Sullivan & Morrall, 1996); it is more
likely to be used if it serves multiple lines and multiple destina-
tions. This paper is concerned with these latter, micro-level place-
ment objectives, as stops along a single route are evaluated in
addressing the redundancy/efficiency tradeoff. Emphasis is placed
on preserving the most desirable stops according to street level
objectives specified by the local transit agency.

Specifically, in this paper, we integrate the notion of population
ridership (demand), physical accessibility (nearness of a crossing)
and connectivity (number of destinations from a stop). We use a
Spatial Interaction Coverage (SIC) model which explicitly maxi-
mizes covered demand weighted by the physical attraction of the
transit facilities demand. The attraction of a facility is either re-
flected by its physical access, the number of destinations it serves
or both. This paper contributes to the literature as follows: (1) it
proposes a framework to address transit accessibility and effi-
ciency by explicitly modeling facility attraction, distance decay
and the importance of destinations served on a single route; (2)
its parameters are estimated in consultation with transportation
planners; and, (3) it integrates a non-linear model through simu-
lated annealing, developed within a geographical information sys-
tem (GIS) framework.

Section 2 reviews the importance of optimization methods when
applied to transit planning. Section 3 addresses the spatial interac-
tion coverage model, which explicitly accounts for facility attraction
and distance decay. To solve this non-linear model, a simulated
annealing heuristic is implemented in GIS. This integrated tool facil-
itates running different transit scenarios. Section 4 describes the
transit planning context for the City of Charlotte (CATS), followed
by an application to an inbound transit route. Concluding remarks
and future developments are discussed in Section 6.

2. Background

In transit planning, two important system factors are transit ac-
cess and system efficiency. For access, distance has a significant
attenuating effect on spatial interaction: when the separation from
an individual to a transit point of access decreases, the likelihood of
using that public transportation service increases (Griffith & Jones,
1980). If the distances or barriers to access a public transportation
service are too great at either the trip origin or destination, how-
ever, then it is unlikely to be utilized as a mode of travel. As
stressed by O’Sullivan and Morrall (1996), knowing how far transit
riders are willing to walk for service has serious implications for
planners and developers in determining a catchment area for each
station. The access coverage distance is affected by various factors,
such as the walking environment to the transit point of access
(Agrawal, Schlossberg, & Irvin, 2008), the structure of the age group
in the originating demand areas (Neilson & Fowler, 1972), and the
reliability of the public transit service. In recent research, Daniels
and Mulley (2011) state that modes of transportation (train or
bus) have a stronger impact on walking distance to public transit.
For instance, research in Sydney points to a 573 m average distance
to public transit, but this distance almost doubles for transit by
train (805 m versus 461 m). A 5 min or 400 m walking distance is
considered a reasonable access standard for bus stop transit in ur-
ban areas (Ammons, 2001; Demetsky & Lin, 1982; FTA, 1996; Lev-
inson, 1983; Schobel, 2005). For system efficiency, fewer stops
along a route will increase travel speeds and lengthen travel dis-
tance possible over a fixed period of time (FTA, 1996; Furth & Rah-
bee, 2000; Saka, 2001; Wirasinghe & Ghoneim, 1981). However,
decreasing the number of stops will also decrease the access to
transit facilities for customers (Foda & Osman, 2010; Murray,
2003). A trade-off exists between the number of transit facilities
and service access, and striking a balance between these two com-
ponents is a critical consideration in transit planning (Ibeas, dellO-
lio, Alonso, & Sainz, 2010; Murray & Wu, 2003).

The main difference among modeling approaches to public
transportation stems from how effectiveness is defined and mea-
sured. A coverage modeling approach can maximize the number
of individuals with suitable access to public transportation, while
limiting the number of stops enhances system efficiency. Coverage
is treated as a binary variable, making non-linear decline in de-
mand with distance difficult to account for (Farhan & Murray,
2006). A distance based approach, such as the p-median, minimizes
the weighted average travel time for individuals to the nearest ac-
cess point, also keeping the number of stops to a predefined num-
ber (Hakimi, 1964). Although the p-median problem can account
for distance decay indirectly, every individual is assigned to its
closest transit access point even if it is not with a suitable distance.

Combining coverage and distance decay approaches is attrac-
tive, but there remains modeling hurdles. Coverage and distance
decay approaches ignore that facility attraction influences rider-
ship. Potential transit riders are likely to travel to the nearest facil-
ity when those facilities are equally attractive (Farhan & Murray,
2006). However, they are willing to walk longer distances for more
attractive facilities (Daniels & Mulley, 2011). A large population
concentrated around a transit stop does not automatically trans-
late into ridership, especially when the destinations served by a
transit facility are not useful for that population. Research has sug-
gested that transit riders are willing to travel larger distances for
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faster or more reliable services, such as express routes (O’Sullivan
& Morrall, 1996).

A number of well-known options exist for implementing mod-
els. It is possible to use commercial solvers, such as Lingo, Gurobi
or CPLEX, but also through programming in a language such as
C++ for large or non-linear problems. Increasingly, the benefits of
linking GIS with optimization solvers are being realized. GIS has
a long contributing history to location science (Murray, 2010). By
means of network analysis, GIS facilitates the modeling of distance
and delineating service areas (Gutierrez & Garca-Palomares, 2008).
Also, GIS can help identify which segments of the population re-
main underserved once transportation infrastructure has been
modified. Implementing the formulation of a location model in a
GIS environment has been made easier by using supported pro-
gramming languages (e.g. Python or Visual Basic for Application
in ArcGIS). Two distinct avenues exist to capitalize on the flexibility
of GIS for decision making in general, and location modeling in par-
ticular (Delmelle, Delmelle, Casas, & Barto, 2011; Ghosh, 2008;
Malczewski, 1999). One option is a loose coupling between a reg-
ular solver and GIS. Recent examples of this include Tong and Mur-
ray (2009) associated with the MCLP, accounting for joint service
when a demand node is served by multiple facilities, Murawski
and Church (2009) who optimize an existing transportation net-
work to improve health care accessibility, and Alexandris and
Giannikos (2010) exploiting GIS capabilities to model complemen-
tary partial coverage. Such approaches have limitations, however.
For instance, input and output files are exchanged manually and
have different data formats. Loose coupling has the disadvantage
of being less efficient, reducing performance, and there is a need
for more than one software program to solve a problem. Alterna-
tively, file exchange can be automated; in ArcGIS for example,
external solvers or other programs can automatically be called
through the use of ArcObjects (Delmelle et al., 2011). An instance
of a graphical user interface (GUI) in the area of location modeling
is LOLA by Hamacher, Hennes, Kalcsics, and Nickel (2003), using a
flexible C++ programming platform and integrated in ArcView
(Bender, Hennes, Kalcsics, Melo, & Nickel, 2004). Heuristics are of-
ten necessary when the model to be solved is non-linear. Integrat-
ing heuristics within a GIS can be accomplished through a tightly
coupled system, such as the application proposed in this paper,
or by means of a standalone system.

3. Modeling spatial interaction

Distance decay and coverage models each have shortcomings.
There is a lack of flexibility in structuring distance decay and no ex-
plicit representation of facility attraction is found in coverage mod-
els. The Spatial Interaction Coverage (SIC) model addresses these
issues by capitalizing on the interaction between a demand node
and a facility. The demand can be split across several facilities
within the coverage distance: a closer facility may not be as attrac-
tive as a facility further away with more amenities. The likelihood
of an individual using a facility will increase with the attraction to
that facility (Huff, 1963). In public transit, different characteristics
reflect attraction, such as the number of transit lines and their fre-
quencies, the number of non-stop destinations and also the quality
of the pedestrian environment in the vicinity of a stop. While exist-
ing facility location models typically do not consider physical ac-
cess of stops and importance of stops in terms of destinations
served, the ability of the spatial interaction coverage to incorporate
these attributes and better model distance decay makes it an
appealing option (Alam, Thompson, & Brown, 2010).

3.1. SIC formulation

The formulation of the SIC utilizes the following notation:
i
 index for demand nodes

j
 index for candidate facility locations

I
 set of demand nodes

J
 set of all candidate facility locations

dij
 shortest distance or travel time between demand

node i and candidate location j

R
 service access distance standard

wj
 attraction weight for candidate facility location j

ai
 demand at location i

a
 exponent controlling attraction weight

b
 exponent controlling distance dij
Ni
 {jjdij < R}; set of candidate facility locations within a
threshold distance R of demand node i
Decision variables:
Xj ¼
1

0

8><
>:
Sij
 interaction between demand node i and candidate
facility location j.
The spatial interaction coverage model is as follows:

Maximize Z ¼
X
i2I

X
j2Ni

Sij ð1Þ

Subject to Sij ¼
aiwa

j d�b
ijP

k2Ni

wa
k d�b

ik Xk

2
664

3
775Xj 8i 2 I; 8j 2 J ð2Þ

X
j2J

Sij 6 ai 8i 2 I ð3Þ
X
j2J

Xj ¼ p ð4Þ

Sij P 0 8i 2 I; 8j 2 J ð5Þ
Xj 2 0;1 8j 2 J ð6Þ

The objective (1) of the spatial interaction coverage model max-
imizes the interaction between all demand nodes and facilities. The
decision variable Sij summarizes the interaction between a demand
node i and facility j as is a function of the magnitude of the demand
at i, the separating distance dij, and the attractiveness of facility j,
denoted wj. This decision variable is zero when there is no attrac-
tion between a demand node and a facility (scenarios include no
open facilities in the vicinity of demand node i, no demand at i,
or the selected facility attraction wj is 0). The SIC contrasts with
the p-median and MCLP model in that demand can partially be as-
signed to more than one facility, and facility attraction is explicitly
integrated. Exponents a and b control the importance given to
facility attraction and distance deterrence. A large value for b
(e.g. b = 5) limits the interaction to nearby facilities, reflective of
difficulty for a certain age group to reach a facility, while the dis-
tance constraint vanishes when b = 0. The denominator accounts
for additional facilities that are open within the neighborhood of
j, acting as competitors. The interaction between a demand node
i and candidate facility j decreases as more facilities open in the
vicinity of j. Note that the sum of the interactions originating from
i must be smaller or equal to the demand, (3). Constraint (4) spec-
ifies that p facilities must be selected. When facility costs are con-
stant, the constraint is equivalent to a budget constraint (ReVelle &
Swain, 1970). The interaction between a demand node and a facil-
ity is required to be positive in constraint (5). Finally, constraint (6)
imposes integer restrictions on the decision variables.
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Fig. 1. Illustration of the the non-stop connectivity and 1 stop connectivity for a hypothetical network of 4 routes (route 67, 88, 88, and 99).
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Various challenges exist in modeling bus stop attractiveness.
One is a composite weight combining various facility characteris-
tics: whether the stop is on an express route or if many other des-
tinations can be reached without a transfer. In this paper, we
quantify facility attraction by estimating how connected that facil-
ity is to the rest of the network (see Fig. 1). The following notation
is introduced:
L
 set of bus routes in the transit system

e
 index of bus stops (facility) on a route E 2 L; e 2 J

l
 index of bus stops (facility) on a route

L 2 L; l 2 J; e – l; E – L.

k
 number of connections allowed.
1 if stop e can be reached in k

connections from j

0 otherwise

8><
>:
Ckðl; eÞ ¼
The weight associated with a candidate stop is scaled from 0 to 1:

wk
l ¼

P
e2E

Ckðl; eÞ

max|ffl{zffl}
j

P
e2E

Ckðl; eÞ
ð7Þ

when k is zero, the weight wk
l of a candidate stop reflects how many

other stops can be reached without having to connect. Transfer
stations tend to receive a greater weight while stops located on
shorter routes with a limited number of destinations receive a low-
er weight. Due to the presence of decision variables in the numera-
tor and denominator, the spatial interaction coverage model is a
non-linear optimization problem and a solution cannot be obtained
by a commercial solver. Farhan and Murray (2006) have trans-
formed the model to a Maximal/Minimal Covering-Distance Decay
Problem (MCDDP) in which all facilities are characterized by the
same attraction value and separation distance is linear (a = b = 1).
Although a solution can be found to the MCDDP by commercial
solvers, it has limitations in the choice of exponent parameters,
explicitly modeling the importance of attraction and distance decay.
An alternative is to use a heuristic to solve the spatial interaction
coverage model.

3.2. Simulated annealing

Since Eq. (1) is non-linear, a total enumeration of all candidate
facilities is not feasible, due to combinatorial explosion (Grötschel
& Lovàsz, 1995). The search for an approximate solution is con-
ducted using a suitable heuristic method H, which helps to identify
an optimal set of facilities J⁄ (or near optimal J+) � J. Simulated
Annealing (SA) is a method by which a metal cools and freezes into
a minimum energy crystalline structure. The heuristic algorithm
was originally proposed as a means of finding the equilibrium con-
figuration of a collection of atoms at a given temperature. Kirkpa-
trick, Gelatt, and Vecchi (1983) made the connection between the
cooling technique and the mathematical optimization. The major
advantage of SA is its ability to avoid becoming trapped at a local
optimum. The algorithm employs a random search that accepts
changes improving the objective function, but also non-improving
moves. The latter is accepted with probability dT, where T is the
current temperature. T cools down as the algorithm progresses,
and so does the probability of accepting non-improving solution.
In location modeling, simulated annealing has been applied to var-
ious problems, such as the p-median problem (Murray & Church,
1996) and non-linear problems like as cell tower allocation (Akella,
Delmelle, Batta, Rogerson, & Blatt, 2010), sampling selection
(Delmelle & Goovaerts, 2009) and multi-site land use allocation
problems (Aerts & Heuvelink, 2002). Some parameters are first de-
fined, followed by the simulated annealing algorithm in Fig. 2,
adapted to the SIC.

Parameters
J(k)
 solution at iteration k, J(k) = {Xj = 1, "j = 1, . . . , ,J}

J(k + 1)
 solution at iteration k + 1.

Z[J(k)]
 objective function value at J(k).

MZ
 difference in objective function value between two

successive iterations

T
 current temperature.

Tst
 starting temperature.

Tfin
 stopping temperature (tolerance).

Tmax
 number of iterations per temperature level.

j
 temperature decreasing factor (cooling schedule).

dT
 probability to accept a move as a function of

temperature T.

J}
 incumbent solution

J+
 best solution

J⁄
 optimal solution
The optimization starts with a randomly selected scheme J(k) of
p candidate locations ðjJðkþ 1Þj ¼

P
j2JXj ¼ pÞ, the objective func-

tion Z[J(k)] (Eq. 1) is evaluated and called the incumbent solution.
Since the solution spqce has not been fully explored yet, the value
of Z[J(k)] is kept in memory as the best solution J(k) = J+ found so
far. J(k) becomes J(k + 1), by swapping two elements of J(k), but
making sure that the number of open facilities remain equal to p
(see Table 1). J(k + 1) becomes the new, current solution if it has
a better objective function value than J(k). When Z[J(k + 1)] < Z
[J(k)], J(k + 1) is accepted with probability dT (see Eq. 9).



Fig. 2. The Simulated Annealing algorithm (spatial interaction coverage model).

Table 1
Simulated annealing algorithm: 5 iterations. Swapped elements are indicated in bold.

k k + 1 k + 2 k + 3 k + 4

0 1 1 1 0
1 0 0 0 1
1 1 0 0 0
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
0 0 1 1 1
1 1 1 0 0
0 0 0 0 0
0 0 0 1 1
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dTfJðkÞ ! Jðkþ 1Þg ¼ 1 if Z½Jðkþ 1Þ�P Z½JðkÞ� ð8Þ

dTfJðkÞ ! Jðkþ 1Þg ¼ 1

1þ e
MZ
Tð Þ

if Z½Jðkþ 1Þ� < Z½JðkÞ� ð9Þ

The process continues in a similar fashion until it reaches a
cooled state. In order to find a solution J+ close to the optimal J⁄,
a high starting temperature Tst and a cooling factor j close to 1
are necessary. This allows the algorithm to escape from a local
maximum.

A tight GIS coupled system integrates the SIC model in ArcGIS2

by means of its programming language, Visual Basic for Applications
(VBA). Demand nodes and facilities serve as input in the form of
points. An interface for the simulated annealing heuristic was built
(see Fig. 3), allowing the user to input various parameters, such as
the weight wj of each facility -corresponding to a table field-, the
importance of that weight a, the distance deterrence factor b, the
number of facilities and the coverage radius (demand nodes located
beyond a certain distance will not be covered). Various simulated
annealing parameters also need to be specified and calibrated. The
sum of the objective is computed according to which facilities Xj

are open,
P

j2JXj. The procedure continues in a similar fashion fol-
lowing the structure of the simulated annealing heuristic. Once the
model is solved, the final optimal solution is automatically displayed
as a spider map showing selected facility locations and covered de-
mand areas.
4. System evaluation

In this section, we apply our methodological framework to an
urban route of the transit system in Charlotte, North Carolina.
The interface was presented during two meetings (December
2010 and May 2011) with one of the authors and three transit
planners of the Charlotte Area Transit System (CATS). CATS oper-
ates 56 local routes and 19 express routes. Express routes link
nearby suburbs at the periphery of the city to its main center.
There are 3662 bus stops scattered over Mecklenburg county, with
a few stops located in adjacent counties serving as terminal sta-
tions for express routes (Fig. 4). Overall boardings have increased
2 Interface available at http://geoearth.uncc.edu/people/edelmelle/gis/SICSA.html
Last accessed January 21 2012.
in the last ten years, but at a much smaller pace than the CATS
operating budget. The structure of the transit network radiates
out from the center along major roads, forcing commuters to make
a stopover in the center of the city. Another discouraging factor is
the redundancy of bus stops (small inter-separation distance),
decreasing overall system efficiency. Systematic evaluation is an
important step in the development of sustainable transportation
(Banister, 2008; Bender et al., 2004). During our first meeting,
the spatial interaction coverage model interface was demonstrated
on a small dataset. A questionnaire of six open-ended questions
was given to obtain feedback regarding bus stop placement consid-
erations, implementation and usefulness of the developed system
for modeling bus transit.

CATS uses a 400 m 1
4 -mile
� �

coverage radius for their stop catch-
ment area, but this distance can vary to 1080 m 2

3 -mile
� �

when some
individuals are heavily dependent on public transportation. It was
agreed that 400 m 1

4 -mile
� �

would provide a conservative estimate.
Connectivity, surrounding land-use and residential density, distance
to the nearest crosswalk, and ease of crossing are important compo-
nents when modeling facility attraction. Surrounding land-use and
residential density is generally reflected on the demand side of the
model. The presence of large retail opportunities was regarded as
critical for keeping stops on a route. Finally, CATS seeks feedback
from the public through town-hall like meetings. An example was gi-
ven on how boardings on particular segments of the airport route in-
creased since a stop was recently placed closer to a large retail store
due to public request, which eventually increased ease of crossing
and boardings. CATS suggested applying the model to a single

http://geoearth.uncc.edu/people/edelmelle/gis/SICSA.html


Fig. 3. The GIS-based interface for the SIC simulated annealing heuristic.
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inbound urban route rather than optimizing an entire system, recog-
nizing that each route is specific to its commuters. Transit planners
suggested that the results from this analysis could provide valuable
insights in their decision to remove some stops separated by very
small distances.
5. Application

The spatial interaction coverage was applied to route 9 in the
city of Charlotte, North Carolina. Route 9 in thick, black in Figs. 4
and 5a runs along central Avenue, connecting the southeastern
(a) (b)

Fig. 4. Bus transit system for Mecklenburg County, NC. The interpolated maps in (b) and
no transfers (k = 0) and one transfer (k = 1), respectively.
end of Charlotte to the Charlotte Transportation Center in the
downtown area, and serving the Eastland Mall. The line is 16-km
(10-miles) long, with an average frequency of five buses in peak
hours, taking a little over 30 min to connect the two ends of the
line. Route 9 is characterized by 46 inbound and 47 outbound
stops. On the inbound route alone (Fig. 5), some stops are only sep-
arated by one block, indicating possible redundancy.

Connectivity at each bus stop in CATS is computed using Eq. 7.
Fig. 4 illustrates the spatial distribution of the probability to reach
all other bus-stops, either with no transfers (k = 0) or one connec-
tion (k = 1) in the city of Charlotte. In the non-stop scenario, two to
three major stations exhibit superior connectivity. One of them in
the center of Charlotte is the Transportation Center, well connected
to many routes, while to the Southwest is the second highly con-
nected area around the SouthPark Community Transit Center, close
to the SouthPark mall. The area North of the city is less connected,
given that a very limited number of express routes run along the
North–South corridor to the periphery, and these routes have
few bus stops. The center of the City is well connected as are areas
to the west corresponding to the University.

The non-stop connectivity of bus stops for Route 9 is summa-
rized in Fig. 5b, keeping in mind that this number will increase
when there are multiple bus routes running in parallel at a given
stop. Not surprisingly, inbound stops closer to the terminal stations
(where different routes converge) have higher connectivity. For the
same reason, stops close to the beginning of the line have greater
non-stop connectivity (since the Albermale Express �40�, route
221 and route 222 are also parallel on some segments of route 9).

To assess the walking accessibility of each transit stop, we used
2008 aerial photos. For each stop, the network distance to the near-
est crosswalk was estimated in GIS. This approach was suggested
during our first meeting with CATS as an important aspect of bus
stop accessibility, and also recently echoed in Daniels and Mulley
(2011). In Fig. 6, we illustrate this criterion for the stops at the
beginning of the inbound route. The map indicates that stops near-
by a crosswalk were more likely to receive a higher crossing score.

Demand is generally modeled using population information
from the census; in the United States, this data is made available
at different levels (tract, block group or block). In this paper, we
take a more disaggregated approach using parcel data for the year
2008. This vector data for Mecklenburg County, North Carolina
contains, for each parcel, descriptive information on land use
(commercial, offices, government institutions and residential)
and square footage. We pool these different types of data together
into one single demand field, since only considering residential
(c)

(c) represent the spatial distribution of the probability to reach all destinations with
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(d)

Fig. 5. CATS bus route 9, with inbound stops (direction to downtown). (b) indicates the non-stop connectivity on the line, with a minimum number of 93 stops (along route
9). (c) displays the location of parcels (demand nodes), while (d) is the interpolated demand.
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parcels would underestimate transit usage. Fig. 5d illustrates the
variation in demand along the route, with increasing values (in
gray) close to the Eastern Mall and in the downtown area. Residen-
tial areas occur more so in the second part of the route.

We applied the SIC on two different scenarios, keeping a similar
access distance of R = 400 m (or 1320 feet; 1

4-mile), but changing
how many transit stops are maintained. In scenario 1, we modeled
facility attraction solely based the non-stop connectivity at each
stop, using parameters a = 2 and b = 2. That is, we ignore accessibil-
ity attributes surrounding each stop. In the second scenario, bus
stop attraction was modeled as a function of walking access and ig-
nored non-stop connectivity along a route. That is, a facility was
made more attractive with decreasing distance to the nearest
intersection (a = 2 and b = 2). Fig. 7 illustrates that a greater
amount of interaction can be achieved with a larger number of
stops, but up to a critical number of stops (p = 25). Although not
displayed here, when the distance impedance was raised signifi-
cantly (b = 2 ? b = 5), the interaction increases up to 30 stops, indi-
cating that a greater number of stops was necessary and that the
same amount of interaction could not be reached when using
b = 2. Although this result is intuitive, it has some critical implica-
tions when modeling access for groups with limited mobility, since
distance is experienced much differently. The shape of the interac-
tion function was quite similar when only optimizing walking ac-
cess in scenario 2. Adding stops beyond p = 30 in scenario 2 did not
increase the objective function. Fig. 8 shows the solution for sce-
narios 1 and 2 with p = 15 and R = 400 m. Selected stops are
green-colored, and so are their catchment area for cartographic
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Fig. 6. Distance to the nearest crosswalk for each inbound stop on route 9.
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MCLP SIC

0 5 10 15 20 25 30 35 40
0

2000

4000

6000

8000

in
te

ra
ct

io
n

(b) Scenario 2: SIC − walking access −α=2, β=2
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Fig. 7. Variation in the interaction as a function of the number of transit stops p
with varying model parameters ((a): scenario 1 and (b): scenario 2).
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association. Reducing the number of stops increases transit effi-
ciency, resulting in a shorter transit time to connect origin and des-
tination of the route. In scenario 1, the model keeps those stops in
the close vicinity of large demand areas (mall) and close to the
Charlotte Transit Center. Most significantly, the model selects stops
with high attractiveness, that is stops with high number of non-
stop connectivity. The last four stops close to the destination are
selected in the optimization process, since all of them are charac-
terized by a relatively large demand and very high connectivity.
There is a long stretch of residential area in the second section of
the route which is not covered at all. This contrasts with the results
for scenario 2 (Fig. 8b), where the model ignores connectivity and
solely attempts to keep these stops with good physical access -clo-
ser to crosswalks- and where demand is large. In this case the
model also identifies a stretch of 10 stops in the second residential
area which are not deemed vital. When scenario 2 with Fig. 6, five
consecutive stops characterized by small distances to the nearest
intersection are selected. Although providing good crossing scores,
the stops in the lower end where the bus starts its route are not se-
lected due to very low demand.

Of interest is whether results found for a Maximal Covering
Location Problem (MCLP) differ significantly from the ones opti-
mizing spatial interaction coverage. To obtain a solution to the
maximal covering location problem, a VBA script was developed
within the interface, exporting the associated integer program to
a text file and solved using Lingo, an optimization solver. We com-
pare the solutions obtained for the MCLP for various values of p
with a radius R = 400 m (1320 ft. or 1

4-mile) to the SIC for Route 9.
The MCLP solution for p = 15 is displayed in Fig. 8c. Although not
shown here, the MCLP objective function increases up to p = 15
facilities and flattens out to p = 20, suggesting that adding more
facilities beyond p = 15 will not increase covered demand. As ex-
pected, MCLP chooses bus stops that can be utilized by the greatest
number of individuals, regardless of their attractiveness, but tends
to spread them more geometrically. In the MCLP, more stops are lo-
cated in the residential area than in the SIC model. The latter can be
a consequence of simultaneously modeling facility attraction



Fig. 8. Solution to scenarios 1 and 2, and the maximal covering location problem, with p = 15 and R = 400 m (1320 ft. or 1
4-mile).
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multiplied by demand and distance decay. The red curve in Fig. 7
summarizes the MCLP solutions evaluated as a SIC objective. We
take the optimal MCLP solution for each p-value and compute what
the SIC objective would be for that solution. We observe that the
MCLP solution is non-inferior (below the pareto curve), indicating
that the MCLP cannot encapsulate the goals inherent to the SIC.
6. Conclusions

The Spatial Interaction Coverage (SIC) model has been devel-
oped within a GIS, and applied to a transit planning problem. The
model represents the interaction between demand nodes and facil-
ities by explicitly accounting for facility attraction, distance deter-
rence and competition among nearby, open facilities. Because of its
non-linearity, a simulated annealing heuristic was developed to
solve the model. A GIS-based interface was built to integrate both
candidate locations and demand nodes as point data, but also to
manage model parameters. It gives the transit agencies decision
making tools to decide on which redundant stops to eliminate
and which strategic stops to maintain. The proposed model was
further refined through system evaluation with local transit plan-
ners, and applied to a inbound bus route within the Charlotte area.
Three different scenarios have been discussed reflecting different
approaches to model facility attraction.

The spatial interaction coverage model provides an alternate
approach to model public transit efficiency and redundancy. In
comparison to the MCLP, the SIC model possesses undeniable ben-
efits as it accounts for the magnitude of facility attraction as well
the importance of distance decay. The unfortunate drawback is
that a solution to the model cannot be found by commercial solv-
ers unless exponents are reduced to 1. Although simulated anneal-
ing is relatively easy to implement and its algorithmic structure is
straightforward, its success strongly depends on: (1) the generated
initial solution, (2) the starting temperature, and (3) the number of
iterations per temperature level. More research is needed to under-
stand the behavior of the algorithm with problem instances of dif-
ferent sizes. Ideally, superior and faster search algorithms, fuzzy
classification or Tabu search will tend to return optimal (or near-
optimal) solutions in a much faster time frame.

The methods used to calibrate facility attraction weights and
willingness-to-walk distance are debatable, and further investiga-
tion through commuter surveys is necessary. Positive attributes
can further be modeled such as handicap access, bike racks, shel-
ters and public phones, while negative attributes such as crime,
the presence of vacant buildings, graffiti or litter could impact



454 E.M. Delmelle et al. / Computers, Environment and Urban Systems 36 (2012) 445–455
the attractiveness of a transit stop. It is relatively straightforward
to combine these different indicators as a composite index. Ulti-
mately, understanding which factors may impact transit boardings
at each stop would improve the estimation of a facility attraction.
The choice of an appropriate value for distance and attraction
parameters a and b is a challenge. As Griffith and Jones (1980)
point out, there may be different expressions for distance decay
as spatial structure of origins and destinations may vary, as the
propensity of origins to emit demand and the attraction of a desti-
nation may change with varying urban morphology. Some individ-
uals may be willing to walk a longer distance in suburban areas to
reach a transit stop (Daniels & Mulley, 2011; O’Sullivan & Morrall,
1996), and low-income groups with no car ownership and de-
prived segments of the population may have no other alternative
than using public transit. This could partially be addressed by mod-
ifying the coverage radius to a location-specific distance Ri. Finally,
as pointed out in the larger case study, bus routes connect to one
another when they share a common bus stop. In reality, connectiv-
ity may be increased if closeby stops are merged into one single
facility.

Other areas which merit investigation are: (1) how the type of
the network (euclidean, network) and distribution of distances af-
fect the quality of the solution (Peeters & Thomas, 1995, 2000;
Schilling, Rosing, & ReVelle, 2000), and (2) the possibilities to dis-
seminate this model in UrbanSim (Waddell, 2002), for instance,
to project what bus stop attractiveness would be in the future.
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