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Abstract

The location of base stations (BS) and the allocation of channels are of paramount importance for the performance

of cellular radio networks. Also cellular service providers are now being driven by the goal to enhance performance,

particularly as it relates to the receipt and transmission of emergency crash notification messages generated by auto-

mobile telematics systems. In this paper, a Mixed Integer Programming (MIP) problem is proposed, which integrates

into the same model the base station location problem, the frequency channel assignment problem and the emergency

notification problem. The purpose of unifying these three problems in the same model is to treat the tradeoffs among

them, providing a higher quality solution to the cellular system design. Some properties of the formulation are proposed

that give us more insight into the problem structure. An instance generator is developed that randomly creates test

problems. A few greedy heuristics are proposed to obtain quick solutions that turn out to be very good in some cases.

To further improve the optimality gap, we develop a Lagrangean heuristic technique that builds on the solution ob-

tained by the greedy heuristics. Finally, the performance of these methods is analyzed by extensive numerical tests and a

sample case study is presented.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Motor vehicle crashes are a major health problem and an economic burden in the United States, see

SmartRisk (1998) and Walker (1996). According to the National Highway Traffic Safety Administration
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(NHTSA, 2000), there were over 6.3 million motor vehicle crashes in 1999. These crashes led to over
40,000 deaths. Of note, approximately 50% of the fatalities occur before the crash victim reaches a hos-

pital.

Current research is branching in two directions. One deals with methods of preventing vehicle crashes on

roads. The second, and more pertinent to this work, is dealing with ways of reducing the response time in

the event of a crash or a fatality. There is a substantial body of literature regarding the impact of emergency

medical service (EMS) response time and time to definitive care on trauma victim outcomes. Terms like

�golden hour� in Jacobs et al. (1984) and Lerner and Moscati (2001), �silver day� in Blow et al. (1999) and

�platinum ten minutes� have been coined to describe the importance of time in treating trauma injuries.
Evanco (1999) establishes a quantitative relationship between fatalities and crash notification time.

According to this paper, if a rural mayday system were implemented (i.e., a 100% market penetration) and

the service availability were 100%, then we would expect monetary benefits of about $1.83 billion per year

and comprehensive benefits (which includes the monetary value attached to the lost quality of life) of $6.37

billion per year. More recently Clark and Cushing (2002) studied data from fatal crashes to predict the

effect of a fully functional ACN system on reducing crash-related mortality in the United States. They

estimate that an ideal system would reduce crash fatalities by 2–6% a year.

Location of base stations and channel allocation in cellular communications plays a major role in
reducing the notification time in the event of a crash, especially in rural areas where coverage is weak. In

this work we address tradeoff issues faced by a cellular service provider who needs to render efficient

coverage to both ‘‘emergency’’ as well as ‘‘regular’’ calls.
1.1. Automated Crash Notification (ACN) systems

Emergency Notification and Response (EN & R) systems and associated services aid a specific individual

or motorist to request help from, and provide information to, authorities about a distress situation. Crucial
to getting adequate help to a crash victim is prompt notification that (a) a crash has occurred, (b) the

location of the crash, and (c) some measure of the severity or injury-causing potential of the collision.

Automated Crash Notification (ACN) systems capable of performing tasks (a) and (b) have been installed

as expensive options on a limited number of high-end luxury cars. These devices are activated by air bag

deployment. More advanced sensors can also estimate the injury-producing capability of the crash. The

first estimate of the number of potential lives saved by ACN technology is 3000 lives per year according to

Champion et al. (1998). In general, there are many reasons that can cause an emergency crash message to

fail to be generated or completed, including:

• Damage caused to the ACN device due to the severity of the crash.

• Loss of primary and backup power in the vehicle as a result of the crash.

• Weak signal strength due to poor cellular coverage, damage to vehicle antenna, or final resting position

of the crashed vehicle (i.e., rolling into a ditch).

• Insufficient cell channel capacity.
1.2. Base station location, channel allocation and access protocols

The following are the four basic components of a cellular mobile network:

• mobile station,

• base station,
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• mobile switching center,

• public switched telephone network.

The mobile station (MS) constitutes the interface between the mobile subscriber and the base station.

Base stations are responsible for serving the calls to or from the mobile units located in their respective cells.
The mobile switching center (MSC) is a telephone exchange especially assembled for cellular radio services.

Finally, the public switched telephone network (PSTN) treats the MSCs as ordinary fixed telephone ex-

changes.

Given an area to serve the teletraffic, cellular providers would have to decide the following:

• The number of base stations to be located. This would depend on budget limitations.

• Optimal positioning of the base stations to maximize the coverage in the region given a restriction on the

number of base stations to be built (particularly true in rural areas where the number of base stations is
less and their locations are thus more critical).

• Channel capacity of each base station subject to the total channel capacity. This would mainly depend

on the teletraffic demand at each base station.

• Maximal base station transmitting power.

• Antenna height.

The first three aspects constitute the design of the cellular network and are one of the major problems in

cellular communications.
A subsequent problem in the design of cellular communications is the efficient use of the limited

available radio channels. There are two strategies for assigning channels to cells: Fixed Channel Assignment

(FCA), and Dynamic Channel Assignment (DCA). The FCA strategy allocates channels to each cell in

advance according to estimated traffic intensity in the cell. The DCA strategy foresees the assignment of

radio resources to various cells dynamically in real time, to meet rapidly changing demand for commu-

nication channels.

We now review previous work in the optimal positioning of base stations and in channel allocation. The

Adaptive Base Station Positioning Algorithm (ABPA) was introduced by Fritsch et al. (1995). It uses an
early version of the Demand Node Concept and the major drawback of ABPA is its lack of speed. A

promising approach to automatic network design was presented by Chamaret et al. (1997). The radio

network design task is modeled as a maximum independent set search problem. In contrast to this, Ibbetson

and Lopes (1997) proposed an algorithm that considers only traffic distribution as a constraint for cell site

locations.

The approach for the design of micro-cellular radio communications proposed by Sherali et al. (1996)

concentrates on radio frequency (RF) constraints, since in the considered micro-cellular environment

network capacity is not of major importance. They used well established non-linear local optimization
algorithms (simplex method, i.e., Hooke and Jeeve�s method, quasi-Newton, and conjugate gradient) in

evaluating the objective function. Tcha et al. (2000) addressed the radio network design problem in a Code

Division Multiple Access (CDMA) system. They use two heuristics: the construction heuristic for choosing

an initial feasible subset of potential sites, and the improvement heuristic for reducing the cost associated

with the selected subset by changing some of its constituent sites. Wright (1998) employed a direct search

method to finding the optimal placement of base stations, since it requires only the value of the function to

be optimized. Bose (2001) used dynamic programming to determine the optimal placement of base stations

in an urban setting, given the cell coverage. Statamatelos and Ephremides� (1996) objective function was
based on maximizing the coverage area while minimizing co-channel interference, and incorporated spatial

diversity.
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We now present an overview of the cellular protocols that can be used to design a wireless network.
Frequency Division Multiple Access (FDMA) assigns individual channels to individual users. These

channels are assigned on demand to users who request service. During the period of the call no other user

can share the same frequency band. Time Division Multiple Access (TDMA) systems divide the radio

spectrum into time slots, and in each slot only one user is allowed to either transmit or receive. In Code

Division Multiple Access (CDMA), all users use the same carrier frequency and may transmit simulta-

neously. Each user has its own pseudorandom codeword. The receiver performs a time correlation oper-

ation to detect only the specific desired codeword.

1.3. Coverage models

The assumption underlying all coverage models is that customers beyond a specified service range are

not adequately served by the service facilities. The objective of the Set Covering Problem (SCP) is to

determine the number of required service centers, i.e. base stations, and their locations such that all users of

the wireless network are served with an adequate service level, i.e. field strength level. However, for an

economic design of wireless communication networks, a tradeoff between the cost of coverage and the

benefit resulting from covering this area is desired. Church and ReVelle (1974) define this problem as the
Maximum Coverage Location Problem (MCLP). The MCLP assumes a limited budget and includes this as a

constraint on the number of facilities to be located. The book by Daskin (1995) contains a thorough

discussion of coverage models and their applications. Our model builds on the SCP and MCLP models in

the context of a cellular application.

1.4. Motivation

To reduce crash-related fatalities and minimize crash notification times, NHTSA sponsored Veridian
Engineering in the Automated Collision Notification (ACN) Field Operational Test Program from 1995 to

2000. ACN explored the ability of in-vehicle equipment to reliably sense and characterize crashes, and

automatically transmit crash location and crash severity data to the proper public safety agencies.

The paper by Akella et al. (2003) summarizes these findings. According to the paper, 70 crashes involving

ACN-equipped vehicles occurred within Erie County, New York. Of the 22 crashes where the severity level

was above the threshold, 14 ACN systems detected the crash and alerted the Erie County Sheriff.

The failure to notify the EMS in the remaining 8 crashes can be attributed to insufficient signal strength.

This number is quite large and hence to eliminate any possibility of failure of the ACN device to notify
due to a weak signal, the Received Signal Strength Indicator (RSSI) should be strong at potential crash

locations.

Though we seek to cover nodes prone to vehicular crashes, it is not only limited to them. For example,

defense establishments, nuclear power stations, high rise buildings etc. which are prone to enemy attacks

need to have sufficient coverage. In the event of an emergency, numerous calls would originate from those

regions and covering such calls is crucial. Over the past few years the FCC has been taking several

important steps in the US (see FCC, 1996) to foster major improvements in the quality and reliability of 911

services available to the customers of wireless telecommunications service providers. We note that this
special coverage could also be profit motivated if the provider identifies a group of important customers to

whom high quality service is imperative.

This paper makes the following three main contributions:

• It models a typical cellular network design problem from the perspective of emergency notifica-

tion.
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• It introduces a unique formulation involving the MCLP with set covering constraints.

• It proposes efficient heuristic solution techniques for this problem.
2. Model formulation

We use the discrete population model for the traffic description, denoted as the Demand Node Concept

(DNC) introduced by Tutschku et al. (1996). A demand node represents the center of an area from which a
given number of call requests per unit time originate. To take into account the time variation of call traffic,

each day is divided into a fixed number of time slots. We assign a weight to each time slot in order to

differentiate the importance attached to the hour of the day when calls are placed. For example, calls placed

during the day might be considered more important than those placed during the night, since most business

calls are made during the day. It is pointed out that the weights attached to each time slot bear no direct

relation to the coverage of emergency nodes. In our model we incorporate mandatory coverage to all the

crash nodes. So irrespective of the values of the weights, the crash nodes are always covered. In our

computational experiments, we assigned weights randomly due to lack of knowledge of how cell phone
companies would assign importance to the time of the day.

An emergency/crash node represents a region that is prone to crashes. Also, there is a limit on the

number of available channels per time slot. We are initially given a set of potential locations of base sta-

tions. The problem is to find an optimal set of locations of a given number of base stations that would

maximally cover the demand nodes based on their demands and cover the emergency nodes. We call this

the Network Design Emergency Coverage (NDEC) model. We assume that our network is designed for a

homogenous system i.e., it uses a single protocol for transmissions. With this assumption, our model be-

comes independent of the cellular protocol (CDMA, TDMA, etc.) in use as long as it can be transformed to
channel capacity requirement as stated in the formulation. We formulate the problem as a Mixed Integer

Programming (MIP) problem. We assume that the demand nodes and the emergency nodes are spatially

static with time and that we know the demands of each demand node for all time slots.

2.1. Network Design Emergency Coverage (NDEC) model
Sets

M set of possible locations of base stations,

N set of demand nodes,

E set of emergency nodes.

Constants

T total channel capacity,

p the number of base stations to be located,

Wt importance attached to time slot t,
Hjt demand at node j at time t,

Aij
1 if BS i covers node j;
0 otherwise:

�

Variables

fijt fraction of demand of node j satisfied by BS i at time slot t,

xi
1 if there is a base station at location i;
0 otherwise:

�
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ðP1Þ Maximize
X
i2M

X
j2N

X
t

WtHjtfijt ð1Þ

subject to X
i2M

xi 6 p; ð2Þ

fijt 6Aijxi 8i 2 M ; j 2 N ; t; ð3ÞX
i2M

fijt 6 1 8j 2 N ; t; ð4Þ
X
i2M

X
j2N

Hjtfijt 6 T 8t; ð5Þ
X
i2M

Aik � xi P 1 8k 2 E; ð6Þ

xi 2 f0; 1g 8i 2 M ;

fijt P 0 8i 2 M ; j 2 N ; t:
The Aij matrix defined above is a 0–1 matrix that indicates whether a node at j can be covered by a BS at i.
Note that distance might not be the only criterion for coverage. Obstructions from buildings, multiple

reflections on walls etc. affect the signal strength at any point. We assume that the Aij matrix has been

constructed taking into account these factors. The total channel capacity is assumed to be the same for all

times slots. The objective function (1) maximizes the demand coverage over all time slots in a day. Con-

straint (2) states that at most p cell towers are to be located. Constraint (3) is just a definitional constraint

wherein the fractional coverage of node j at time t by a BS i exists only if BS i is located and node j falls
within the coverage area of BS i. Constraint (4) ensures that the number of channels allocated to a demand
node is at most equal to its demand at any given time slot. Constraint (5) imposes a restriction on the total

channel capacity at any time t. To take into account the fact that coverage of emergency nodes is essential,

we have constraint (6), which states that each emergency node should be covered by at least one BS. It

should be pointed out here that emergency calls are not considered in assessing the adequacy of channel

capacity. This is justified because the volume of such incidents is miniscule in comparison to the overall

cellular traffic volume.

There are numerous extensions to this problem that could be possible. For example, while allocating

channels, we did not take into account effects such as co-channel interference and adjacent channel
interference. We could treat the coverage of the special set of nodes E as a second objective, making it a

bicriteria problem. In reality, signal strength varies with distance from the cell tower location. More spe-

cifically, under ideal conditions the RSSI value can be expected to decrease inversely in proportion to the

square of the distance from the cell tower according to Macario (1997). Furthermore, the effect of foliage,

terrain, etc. on RSSI value can be quite significant––see, for example, Delmelle et al. (submitted for

publication). According to Akella et al. (2003), calls that have an RSSI value of )89 dB or higher go

through uninterrupted (i.e. with probability 1). For values less than )119 dB, the call will not be completed

(i.e. with probability 0). When RSSI values fall between )89 and )119 dB, there is a probability associated
with call completion. The model can be changed to reflect this by considering partial coverage possibilities

of calls. We could use some empirical results to postulate the decrease in signal strength with distance from

the cell tower and then develop a partial coverage model to capture this intermediate range of RSSI values.

This intermediate range of RSSI values can be particularly relevant since foliage effects can lower RSSI

value by as much as 20%, making areas of decent coverage (say with RSSI value of )80 dB) into areas

where coverage can be questionable. Thus partial coverage models need to be explored to accurately model

the true coverage of both ‘‘regular’’ and ‘‘emergency’’ customers. The NDEC model proposed here is the
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first of its kind and one of the basic models in cellular network design from the perspective of emergency
notification.
3. Model properties

The NDEC formulation is a Mixed Integer Programming (MIP) problem. A closer look at the problem

reveals that it is a combination of the set covering and the maximal covering location problems. We could

not find any articles that addressed this problem in the OR literature. Church and ReVelle (1974) proposed a
maximal covering location problem with mandatory closeness constraints wherein they maximize the

population that can be covered within a given service distance S while at the same time ensuring that the

users at each point of demand will find a facility no more than T distance away (T > S). This is a set covering
problem with respect to the distance T and a maximal covering problem with respect to S. The authors solve
an example problem but there is no general solution technique proposed in that paper. Since this problem is a

superset of the set covering and the maximal covering location problems, it is NP-complete.

The problem becomes more realistic with an increase in the number of time slots. The actual time

variation of demand can be modeled accurately only with a large number of time slots but then this presents
a very large problem to be solved. For instance, if we take a typical problem with 1000 demand nodes, 200

emergency nodes, 500 potential locations of BSs and 20 time slots, then it would have 107 variables and a

much larger number of constraints. This presents a very large-scale MIP and professional solvers like

CPLEX would not be able to handle such huge data as will be seen later in the paper.

According to the formulation, a demand node that is covered by more than one BS in a solution might

not be assigned to the nearest BS. Ideally, a cell phone call made from any location tries to connect to the

nearest BS. Arriving at such a solution from a given optimal solution is trivial and there is no change in the

objective function value in doing so. In other words, given an optimal solution, it is possible to construct an
alternate optimal solution in which each demand node is assigned to its closest BS.

Property 1. Let ðx�; f �Þ be an optimal solution for the problem (P1) with an objective function value Z� and let
M� (M� � M) be the optimal set of BSs. ðx0; f 0Þ is an alternate solution constructed from the original optimal
solution such that
x0i ¼ x�i 8i 2 M ;

f 0
ijt ¼

P
l2M� f �

ljt if i 2 M�; Aij ¼ 1 and i is the closest BS to node j 8 j 2 N ; t;

0 otherwise:

�

Then ðx0; f 0Þ is also optimal to the original problem with objective function value Z�.

Proof. First let us prove that the new solution ðx0; f 0Þ is feasible. Since x0 ¼ x�, the new set of optimal

locations of BSs would be M�. Constraints (2) and (6) are satisfied since x0 ¼ x�. Constraint (3) is satisfied
for all f 0

ijt ¼ 0. From the definition, f 0
ijt > 0 if i 2 M�, j 2 N and Aij ¼ 1. Hence constraint (3) is satisfied for

all i, j, t. If we assume that there is only one BS closest to each node, constraint (4) is automatically satisfied

since
P

i2M f 0
ijt ¼

P
i2M� f 0

ijt ¼
P

i2M� f �
ijt 6 1. Now,
X

i2M

X
j2N

Hjtf 0
ijt ¼

X
j2N

Hjt

X
i2M�

f 0
ijt ¼

X
j2N

Hjt

X
i2M�

f �
ijt 6 T
since f �
ijt is a feasible solution. Hence

P
i2M

P
j2N Hjtf 0

ijt 6 T which satisfies constraint (5). Therefore, the new

solution ðx0; f 0Þ is feasible to the original problem. Now let us compare the objective function values of both

the solutions. For the problem (P1),
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Z 0 ¼
X
i2M

X
j2N

WtHjtf 0
ijt ¼

X
j2N

WtHjt

X
i2M�

f 0
ijt ¼

X
j2N

WtHjt

X
i2M�

f �
ijt ¼ Z�:
Hence Z 0 ¼ Z�. Therefore, the alternate solution ðx0; f 0Þ is feasible and optimal to NDEC prob-

lem. h

We now explore the solution structure to develop heuristics that give a near optimal solution in rea-

sonable time.

Property 2. Let F ¼ ffijtj0 < fijt < 1; 8i; j; tg. Then, 9 an optimal solution ðx�; f �Þ, such that jFj6 number of
time slots.

Proof. Given optimal locations of BSs, for any given time slot, each demand node can be assigned

channels equal to its demand until all the channels are used up. In such a case only one demand is satisfied

partially. Therefore, we have at most one fractional variable for each time slot and hence the prop-

erty. h

Property 2 gives insight to the final solution structure. Though the problem is a combination of set
covering and maximal covering location problems, it can be modeled as a maximal covering problem by

treating the emergency nodes as demand nodes of very high demand, say M (a large number). In such

cases, we can use the vast amount of literature available to solve maximal covering location problems to

solve this problem. But one intricacy involved would be in cases where the set covering problem is

infeasible. The modified problem would not be able to detect any infeasibility in the original problem

since the maximal covering location problem is never infeasible. So this kind of approach would work

only when the underlying set covering problem is feasible. It should also be noted that the channel

capacities should be altered accordingly to accommodate the coverage of emergency nodes of high de-
mand.
4. Solution techniques

4.1. Deterministic Addition (DA) heuristic

The first heuristic considered is called the Deterministic Addition (DA) heuristic. It is similar to the
Greedy Addition (GA) Algorithm proposed by Church and ReVelle (1974) for the maximal covering

location problem. The idea behind this approach is that, by covering a sparsely covered emergency node,

there is a high possibility of covering other emergency nodes that are better covered than this node. Once all

of the emergency nodes are covered, the heuristic moves on to the maximal covering problem of the

uncovered demand nodes. Now the problem is updated by removing the covered demand and emergency

nodes, and by decreasing the total available channels for each time slot by the amount of demand covered

in that time slot. Then the DA determines that emergency node with minimum coverage from among the

uncovered emergency nodes. Repeating the process again, it selects the BS with maximum weighted cov-
erage covering this emergency node. This process is repeated until all the emergency nodes are covered after

which it follows the Greedy Addition (GA) algorithm of Church and ReVelle (1974) to maximally cover the

demand nodes. The heuristic terminates if all the demand nodes are covered or p BSs are located or all the

available channels are used up. We note that the DA heuristic does not always guarantee a feasible solution

even if the original problem is feasible.
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4.2. Probabilistic Addition (PA) heuristic

In the PA heuristic there is a probability associated with selecting an emergency node to be covered and

this is inversely proportional to the number of BSs covering that emergency node. This heuristic is run for a

fixed number of iterations and terminates when it encounters a feasible solution or the iteration limit is

reached. This approach is similar to the Simulated Annealing (SA) search technique and helps to prevent

the search from getting stuck at local optima. The main advantage of this heuristic is that in most cases it

returns a feasible solution (if one exists).
4.3. Set Max Cover (SMC) deterministic heuristic

This is a slight modification of the DA heuristic that concentrates totally on the coverage of emergency

nodes in the first phase and then moves on to the coverage of demand nodes in the second phase. This

should help remove infeasibilities in the final solution. We call this the SMC heuristic because the first phase

of this heuristic involves the set covering problem of the emergency nodes and the second phase involves

maximal covering of the demand nodes.
4.4. Set Max Cover (SMC) probabilistic heuristic

This is a modification of the SMC deterministic heuristic with probabilistic selection. This heuristic

would try to jump out of local optima (if any) while doing the search.
4.5. Lagrangean heuristic

From our computational experience, the LP relaxation of (P1) yielded IP optimal solutions in many

cases. But this is not always the case. Motivated by this we develop a Lagrangean heuristic for our problem

using subgradient optimization, see e.g., Ravindra et al. (1993). Consider the problem (P1). Upon relax-

ing the constraint set 3 with a penalty cost kijt and placing it in the objective function we obtain the for-

mulation
LðkÞ ¼ Maximize
X
i2M

X
k2N

X
t

ðWtHjt � kijtÞfijt þ
X
i2M

X
k2N

X
t

kijtAijxi
subject to constraints (2), (4), (5) and (6) and xi 2 f0; 1g 8i 2 M , fijt P 0 8i 2 M ; j 2 N ; t, kijt P 0 8i 2
M ; j 2 N ; t.

This problem is separable into two subproblems (SP1 and SP2) in the variables x and f :
ðSP1Þ Maximize
X
i2M

X
k2N

X
t

ðWtHjt � kijtÞfijt

subject to

X
i2M

fijt 6 1 8j 2 N ; t;

X
i2M

X
j2N

Hjtfijt 6 T 8t;

f P 0 8i 2 M ; j 2 N ; t:
ijt
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This problem is further decomposable into separate time slots as
ðSP1tÞ Maximize
X
i2M

X
k2N

ðWtHjt � kijtÞfijt

subject to X
i2M

fijt 6 1 8j 2 N ;

X
i2M

X
j2N

Hjtfijt 6 T ;

fijt P 0 8i 2 M ; j 2 N :
Here, SP1t denotes the subproblem SP1 for time slot t. This is just a linear program in the variable fijt. Also

this resembles a knapsack problem and can be solved without the use of any standard solver. A simple

algorithm can be developed to solve the problem to optimality for each time slot. The other subproblem is:
ðSP2Þ Maximize
X
i2M

X
k2N

X
t

kijtAijxi

subject to X
i2M

xi 6 p;

X
i2M

Aik � xi P 1 8k 2 E;

xi 2 f0; 1g 8i 2 M :
This is a 0–1 IP and is a weighted set covering problem (and hence is NP-complete). Though the problem is

NP-complete our conjecture is that, since the number of emergency nodes is very small when compared to

the number of demand nodes, finding an IP optimal solution to this problem is relatively easy (for a solver

like CPLEX). The rationale behind using Lagrangean relaxation can be summarized as follows:

• One can show through numerical examples that LðkÞ does not possess the integrality property, so the

best Lagrangean bound will be strictly better than the LP bound.

• For large-scale problems, the number of variables would be of the order of 107. Therefore, it would not
be sensible to use a solver like ILOG CPLEX for solving even LP relaxations.

• The problem decomposes into ‘‘manageable’’ subproblems.

• It generates a lower bound at every iteration since a solution to subproblem SP2 gives a feasible set of BS

locations x to cover emergency nodes. An overall feasible solution can then be generated by inspection.

4.5.1. Subgradient optimization

This technique starts with an initial set of values of the multipliers k0ijt. The multipliers are then updated

as follows:
kkþ1
ijt ¼ ½kkijt þ lkðf k

ijt � Aijxki Þ�
þ
:

In this expression, f k
ijt and xki is any solution to the Lagrangean subproblem when kijt ¼ kkijt and lk is the step

length at the kth iteration. Only the positive part of kkþ1
ijt is chosen because they are constrained to be non-

negative. To ensure that this method solves the Lagrangean multiplier problem, we need to exercise some

care in the choice of the step sizes. If we choose them too small the algorithm would become stuck at the
current point and not converge; if we choose the step sizes too large, the iterates kkijt might overshoot the

optimal solution and perhaps even oscillate between non-optimal solutions. The following compromise

ensures that the algorithm strikes an appropriate balance between these extremes and does converge:
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lk ! 0 and
Xk

j¼1

lj ! 1:
For example, choosing lk ¼ 1=k satisfies these conditions. We use the standard subgradient search tech-

nique wherein the step size is determined as follows:
lk ¼
ek½LðkkÞ � LB�P
k ðf k

ijt � Aijxki Þ
2
:

In this expression, LB is a lower bound on the optimal objective function value of the problem (P1) and ek is
a scalar chosen (strictly) between 0 and 2. The denominator is the Euclidean norm of the vector of the

inequality constraint that was relaxed. Initially, the lower bound is the objective function value of any

known feasible solution to the problem (P1). As the algorithm proceeds, if it generates a better feasible

solution, it uses the objective function value of this solution in place of the lower bound LB. Since this
heuristic has no convenient stopping criteria, we run it for a specified number of iterations and then ter-

minate.
5. Computational results

All five heuristics have been tested on three types of data sets viz. small, medium and large-scale

problems. The heuristics have been coded in C, which interfaces with the ILOG CPLEX callable library
while solving using the Lagrangean heuristic. These instances have been run on a 768 MB RAM, Intel

Pentium 3, 800 MHz processor operating on a Windows platform. The instances for the NDEC problem

were created through a small algorithm specially designed for this purpose.

5.1. Instance generator

We developed an algorithm to provide some instances for the NDEC problem. Basically, we had to

estimate the size of the working area, the location and number of candidate BSs, the coverage area of each
candidate BS, the location and number of demand and crash nodes, the demand of each demand node for

each time slot, the total channel capacity and the weight of each time slot.

For all the test problems, a square working area of either 10 units by 10 units or 20 units by 20 units was

chosen. The demand and crash nodes were assumed to be randomly distributed over this working area (see

Fig. 1). The demands were generated randomly between 1 and 9 (with a mean of 5). This is done over all the
Base Station 

Emergency Node 

10 

10 

Demand Node 

Fig. 1. Instance generator.
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time slots. The locations of candidate BSs are assumed to follow a distribution similar to the spatial dis-
tribution of the demand nodes. This means that, there would be more candidate BSs where the demand

density is high, and less where the demand density is low or 0. Note that the location of a candidate BS

coincides with the location of one of the demand nodes. Initially, the BSs are assumed to have a circular

coverage area for these test problems. With the coverage obtained, if any candidate BS does not cover a

crash node then it is assumed to be covered by the BS nearest to it. This is done to avoid infeasibilities at the

initial stages. Hence the coverage region of a BS is not exactly circular. The radius of coverage of a BS is

chosen such that, with the actual number of BSs to be located, the whole working area is covered. This was

done to avoid any kind of preprocessing to the test problem, which would otherwise reduce the actual
number of non-zero variables to a great extent.

Fig. 1 shows a test problem generated using the instance generator. Note that the location of the can-

didate BSs coincides with the locations of the demand nodes.

5.2. Results

A 10 unit by 10 unit working area was selected to create test problems for the first four heuristics. A total

of 300 demand nodes and 50 crash nodes were randomly generated. Based on the spatial distribution of the
demand nodes, 200 candidate BS locations were generated. The demand of each node was generated as a

random number between 1 and 9 with a mean 5. The total channel capacity was assumed to be 1500. The

coverage radius of a BS is 1 unit. The weight of each time slot was assigned on a scale from 1 to 5 randomly.

With this input data, the actual number of BSs to be located was varied from 20 (the minimum number

required) to 34 and solved using the heuristics. For each value of the actual number of BSs, four different

test problems were created and solved using the four separate heuristics. The location of the demand and

accident nodes was assumed to be the same for these instances. However, with each new instance we

changed the location of the candidate BSs and the demand values. The results are as shown in Table 1.
Table 1 lists the following. Under the CPLEX MIP column, the optimal objective function value and the

running time of CPLEX (seconds) is shown. Under each heuristic, the solution is shown as a percentage of

the optimal value. In case the heuristic reports an infeasible solution, then the percentage feasibility (i.e.

percentage of the crash nodes that it could cover using the assigned number of BSs) is shown in the next

column. The third column shows the running time of each heuristic.

Table 2 summarizes the performance of each heuristic. From this table we can conclude that either one

of the heuristics or a combination of them can be used to arrive at an effective solution for the NDEC

problem. The SMC probabilistic would prove effective only for cases where the actual number of BSs
marginally covers the emergency nodes, because it rarely reports infeasibility when the original problem is

feasible.

Fig. 2 shows a plot of the feasibility curves for the four heuristics versus the actual number of BSs lo-

cated. The SMC probabilistic never reports an infeasible solution and hence it shows 100% feasibility in the

graph (a parallel line to the X axis). Also note that, as the number of BSs to be located increases, the %

feasibility of all the heuristics increases.

5.2.1. Lagrangean heuristic

As mentioned before, the Lagrangean heuristic was tested for three different problem sizes. The results

for both the small and medium scale problems are presented in this section. The next section includes a case

study that presents the results for large-scale problems.

A test problem on a 10 unit by 10 unit working area was created for the small size problems. The step

size (ek) was chosen to have an initial value of 2 and if the upper bound did not improve in three successive

iterations, the step size was reduced to half. In successive iterations, if the step size reduced to 0.05, it was

re-initialized to 2. This was done to avoid the solution from getting stuck at a local value. The instances for



Table 1

Heuristic performance

No. of

base

stations

CPLEX MIP Det Addition (DA) Prob Addition (PA) Set Max Cover (SMC) det Set Max Cover (SMC) prob

Obj value Time

(seconds)

% opti-

mally

% fea-

sibility

Time

(seconds)

% opti-

mality

% fea-

sibility

Time

(seconds)

% opti-

mality

% fea-

sibility

Time

(seconds)

% opti-

mality

% fea-

sibility

Time

(seconds)

20 27,438 132 Inf 88 1 Inf 84 24 Inf 98 1 87.41 100 12

20 27,438 116 Inf 96 1 Inf 76 24 Inf 98 0 78.82 100 12

20 27,438 115 Inf 88 1 Inf 80 23 Inf 94 1 68.78 100 12

20 27,438 116 Inf 92 1 Inf 86 27 Inf 98 1 85.92 100 16

21 27,438 144 Inf 82 1 Inf 80 32 Inf 98 0 58.39 100 17

21 25,571 152 Inf 88 1 Inf 88 26 90.25 100 1 77.45 100 13

21 25,571 115 Inf 90 1 Inf 86 25 Inf 98 1 91.69 100 13

21 30,479 144 Inf 96 1 Inf 82 26 90.04 100 0 77.67 100 13

22 23,937 133 Inf 98 0 Inf 90 26 89.94 100 0 81.88 100 13

22 26,847 133 Inf 96 0 Inf 84 27 83.48 100 0 80.28 100 14

22 21,092 128 Inf 88 1 Inf 90 26 89.63 100 1 81.4 100 14

22 28,746 136 Inf 94 1 Inf 86 26 93.56 100 0 74.86 100 13

23 19,738 136 94.38 100 0 83.47 100 11 88.9 100 1 81.67 100 14

23 28,210 135 Inf 90 1 Inf 86 27 87.08 100 0 79.28 100 14

23 33,362 158 95.33 100 0 88.1 100 12 94.78 100 1 82.26 100 8

23 24,468 164 Inf 98 1 Inf 86 27 87.78 100 1 84.75 100 2

24 31,255 268 99.11 100 1 86.92 100 0 94.25 100 1 85.38 100 2

24 33,835 161 96.42 100 1 83.89 100 5 93.81 100 1 80.1 100 1

24 23,591 144 96.75 100 1 80.52 100 18 87.54 100 1 86.2 100 4

24 30,462 139 Inf 98 0 84.92 100 15 93.24 100 1 81.41 100 1

25 36,095 137 98.23 100 1 85.57 100 4 92.73 100 1 86.92 100 0

25 37,968 178 98.28 100 1 87.47 100 3 96.76 100 1 82.73 100 1

25 27,222 146 Inf 92 1 84.68 100 8 93.92 100 0 74.83 100 4

25 30,400 164 96.84 100 1 90.14 100 2 92.07 100 0 85.05 100 2

26 31,520 241 98.13 100 1 91.64 100 2 96.72 100 1 85.92 100 0

26 35,514 216 96.3 100 1 92.48 100 11 94.04 100 1 80.25 100 1

26 22,173 221 95.93 100 1 89.9 100 1 95.57 100 1 81.21 100 1

26 26,197 172 99.42 100 1 83.29 100 3 96.63 100 1 86.25 100 0

27 30,391 146 98.63 100 1 85.83 100 2 97.74 100 0 88.43 100 1

27 26,107 150 98.08 100 1 83.74 100 1 91.86 100 1 80.48 100 0

27 34,992 157 98.64 100 1 91.36 100 1 95.13 100 1 82.25 100 0

27 28,890 234 98.31 100 1 85.4 100 1 96.99 100 1 83.21 100 0

28 28,441 157 98.61 100 0 88.37 100 1 96.02 100 1 91.3 100 1

28 33,480 138 98.3 100 1 89.27 100 2 97.01 100 1 89.88 100 1
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Table 1 (continued)

No. of

base

stations

CPLEX MIP Det Addition (DA) Prob Addition (PA) Set Max Cover (SMC) det Set Max Cover (SMC) prob

Obj value Time

(seconds)

% opti-

mally

% fea-

sibility

Time

(seconds)

% opti-

mality

% fea-

sibility

Time

(seconds)

% opti-

mality

% fea-

sibility

Time

(seconds)

% opti-

mality

% fea-

sibility

Time

(seconds)

28 26,878 203 95.7 100 1 87.17 100 1 95.74 100 1 87.91 100 1

28 35,007 161 98.25 100 1 84.12 100 1 97.29 100 1 85.88 100 0

29 31,670 206 98.96 100 1 92.47 100 1 97.34 100 1 87.19 100 1

29 32,017 317 98.95 100 2 83.2 100 1 96.13 100 2 86.45 100 1

29 31,844 279 97.06 100 1 90.39 100 2 88.14 100 1 89.29 100 1

29 34,363 253 98.37 100 1 90.72 100 2 94.42 100 2 83.29 100 1

30 29,617 856 98.75 100 2 83.12 100 3 96.8 100 2 90.94 100 1

30 28,475 282 97.49 100 2 87.3 100 1 97.22 100 1 89.42 100 1

30 31,889 361 97.73 100 2 87.5 100 1 97.61 100 1 87.74 100 2

30 30,170 534 99.27 100 2 84.84 100 1 97.65 100 1 87.07 100 1

31 18,831 332 96.49 100 1 90.81 100 2 96.67 100 2 85.9 100 2

31 38,916 940 99.12 100 2 89.56 100 2 97.66 100 1 92.36 100 2

31 29,834 603 98.24 100 2 92.12 100 1 97.72 100 2 86.24 100 1

31 17,452 745 98.38 100 2 90.41 100 2 97.35 100 1 90.81 100 2

32 27,754 254 98.48 100 1 93.65 100 2 97.67 100 1 94.15 100 2

32 32,189 407 98.49 100 2 92.27 100 1 96.5 100 2 88.37 100 2

32 32,085 239 98.41 100 1 86.54 100 2 97.38 100 2 91.4 100 1

32 27,989 591 98.49 100 2 89.35 100 2 95.29 100 2 84.37 100 2

33 30,591 468 97.07 100 2 89.52 100 2 96.55 100 1 88.13 100 2

33 19,337 260 98.57 100 2 90.34 100 1 96.9 100 2 89.61 100 1

33 27,550 455 98.32 100 1 90.87 100 1 96.12 100 1 89.93 100 1

33 23,418 530 98.57 100 2 92.15 100 1 97.79 100 2 90.51 100 1

34 30,881 280 98.37 100 1 90.57 100 1 97.25 100 1 89.1 100 1

34 25,469 414 99.23 100 2 96.1 100 1 98.2 100 2 93.76 100 1

34 37,185 215 98.39 100 2 90.25 100 1 97.15 100 2 88.04 100 1

34 37,776 507 98.75 100 2 92.13 100 1 97.91 100 1 95.43 100 2

Coverage radius¼ 1; number of time slots¼ 10; potential number of BSs¼ 300; total channel capacity¼ 1500; number of demand nodes¼ 300; number of accident

nodes¼ 50.
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Table 2

Summary of results for the heuristics

Average % optimality Average % feasibility No. of infeasibilities

out of 60

Average computation

time

Det Addition (DA) 97.94 97.9 16 1.17

Prob Addition (PA) 88.35 96.4 14 8.44

Set Max Cover (SMC) det 94.62 99.7 6 1.03

Set Max Cover (SMC) prob 84.96 100 0 4.23

Feasibility Curves
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Fig. 2. Feasibility curves for the heuristics.
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small size problems consisted of 150 demand nodes, 30 crash nodes, 100 candidate BSs and 10 time slots.

The total channel capacity for each time slot was assumed to be 500. The SMC deterministic and proba-

bilistic heuristics provided a starting solution to the Lagrangean heuristic. When varying the actual number

of BSs to be located, we create a different instance of the problem but retain the location of the demand and

accident nodes. In all the problems the maximum number of Lagrangean iterations was set to 10,000,

though this figure was never reached when solving even the large size problems. The subgradient search was

terminated under the following criteria:

• starting solution reported by the greedy heuristic is infeasible,

• optimality gap is reduced to less than 1%,

• there is no improvement in the upper bound in 200 successive iterations,

• iteration limit is reached.

The problem is also run on CPLEX 7.1 by creating an LP input file. Note that even in CPLEX the

optimality gap was preset to 1%. This means that if the gap between the lower and upper bounds obtained

while solving the problem in CPLEX falls to within 1% then the optimization is terminated. Our goal was to
test the performance of our algorithm for a preset quality of the solution. The results are shown in Tables 3

and 4. Note that the Lagrangean heuristic performs better in terms of the solution time although in some

cases the solution obtained by CPLEX is better than the Lagrangean heuristic. For instance in Table 3,

when the number of base stations to be located is 10, the demand weighted coverage obtained by CPLEX is

9860 which is better than the one obtained by the Lagrangean heuristic (9794). With SMC deterministic as

the starting solution the first bound obtained by Lagrangean relaxation is good enough to obtain a <1%

optimality gap. Hence the solution does not improve from the one provided by the heuristic. In the case

of SMC probabilistic, Lagrangean actually builds on the starting solution and finally reaches a <1%



Table 3

Small size problems––SMC deterministic (Lagrangean performance)

No. of base

stations

CPLEX SMC det Lagrangean heuristic

Solution Time

(seconds)

Solution Lower

bound

Upper

bound

% optimality gap Iterations Time

(seconds)

9 14,544 130 14,194 14,467 14,605 0.954 29 6

10 9860 141 9671 9794 9876 0.837 6 2

11 14,724 320 14,605 14,703 14,727 0.163 1 <1

12 13,797 296 13,871 13,871 13,908 0.267 1 <1

13 13,281 305 13,348 13,348 13,400 0.390 1 <1

14 14,125 474 14,125 14,125 14,130 0.035 1 <1

15 13,041 278 13,151 13,151 13,154 0.023 1 <1

Number of demand nodes¼ 150; number of crash nodes¼ 30; potential number of base stations¼ 100; coverage radius¼ 2; channel

capacity¼ 500; number of time slots¼ 10.

Table 4

Small size problems––SMC probabilistic (Lagrangean performance)

No. of base

stations

CPLEX SMC prob Lagrangean heuristic

Solution Time

(seconds)

Solution Lower

bound

Upper

bound

% optimality

gap

Iterations Time

(seconds)

9 12,901 148 11,726 12,901 12,936 0.276 147 42

10 15,178 151 14,579 15,076 15,223 0.975 41 10

11 12,390 250 11,961 12,419 12,452 0.266 24 6

12 15,094 296 14,708 15,071 15,178 0.710 2 <1

13 14,055 337 13,721 14,088 14,139 0.362 1 <1

14 14,886 368 14,898 14,905 14,938 0.221 1 <1

15 14,157 493 13,965 14,121 14,157 0.255 1 <1

Number of demand nodes¼ 150; number of crash nodes¼ 30; potential number of base stations¼ 100; coverage radius¼ 2; channel

capacity¼ 500; number of time slots¼ 10.
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optimality gap. The Lagrangean heuristic solves the problem in less than 2 seconds average starting with

SMC deterministic heuristic whereas CPLEX takes more than 4 minutes. For the SMC probabilistic
heuristic, Lagrangean takes approximately 9 seconds whereas CPLEX takes 5 minutes to solve the small

size problems. As a conclusion, for small scale problems, the Lagrangean heuristic performs very well both

in terms of the quality of the solution and the solution time. CPLEX takes an average of 4 minutes to solve

this class of problems.

For medium scale problems, a 20 unit by 20 unit working area was considered. Similar step sizes were

chosen. The problem consisted of 500 demand nodes, 150 crash nodes, 400 candidate BSs each with a

coverage radius of 3 units and 10 time slots. The total channel capacity for each time slot was assumed to be

2000. The actual number of BSs was varied from 18 to 23.
The SMC deterministic heuristic was used as the starting solution. The Lagrangean heuristic was run with

a preset optimality gap of 2% or 10,000 iterations whichever is earlier. Note that in this case the solver

CPLEX was run only until the time the Lagrangean heuristic finds a solution. The result is shown in Table 5.

The results look impressive both in terms of arriving at a solution and in terms of computational effi-

ciency. For the CPLEX solver, the problem became intractable. It failed to find a feasible solution within

the time in which the heuristic finds a solution with less than 2% gap. A look at the problem tells us that this

medium sized problem has approximately 2 million variables and an equal number of constraints. Solving a

problem of a million variables is cumbersome even from a point of building input files for the solver. The
Lagrangean technique exploits the special structure the problem presents, and reduces the load on CPLEX



Table 5

Medium size problems––SMC deterministic (Lagrangean performance)

No. of base

stations

SMC det Lagrangean heuristic CPLEX

Solution Lower bound Upper bound % optimality

gap

Time

(seconds)

Solution Time

(seconds)

18 34,592 37,121 37,815 1.87 1000 NA 1000

19 53,522 55,379 56,454 1.94 86 NA 86

20 33,167 34,121 34,659 1.58 79 NA 79

21 45,367 45,491 46,311 1.80 23 NA 23

22 57,643 57,643 58,772 1.96 4 NA 4

Number of demand nodes¼ 500; number of crash nodes¼ 150; potential number of base stations¼ 400; coverage radius¼ 3; total

channel capacity ¼ 2000; number of time slots¼ 10.
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to solve a 0–1 IP of just 400 variables (at each iteration). The knapsack problem is solved without using

CPLEX by a simple algorithm. This involves building huge arrays and running search algorithms on these

arrays. But comparatively this is much easier to do than to write an LP format file to CPLEX. Though the

Lagrangean heuristic technique exposes some of the limitations of professional solvers, at the same time it

advocates clever usage of solvers by solving tractable problems iteratively and searching for the best

solution. In the results above, an interesting feature to be observed is that the solution time of the heuristic
decreases with an increasing number of BSs, whereas the CPLEX solution time exhibits no such behavior.

The main reason behind this is that the starting solution provided by the greedy heuristic improves with

more BSs as the problem moves away from infeasibility. Since the initial solution quality is better,

improving this further using the Lagrangean approach (to within 2% optimality) would consequently re-

quire lesser time.

From our computational experience, we observed that given a small-sized problem where the radius of

coverage is smaller for each BS, CPLEX solves it as efficiently as the Lagrangean heuristic. This is because

of the fact that, with a weak coverage of each BS, the number of non-zero variables is greatly reduced and
the resulting problem size becomes very small. But we focused on testing the performance of our heuristic

on a real world problem where even after preprocessing, the resulting number of non-zero variables is very

large. Moreover, we have not included any preprocessing techniques in the heuristic. And owing to this,

when the subgradient search is done, the program scans the entire variable set even though preprocessing

can ignore some of them. This, if implemented this would actually lead to a considerable reduction in the

problem size and subsequently the solution time.
6. Case study

We have applied the Lagrangean heuristic technique to the rural parts of Erie County, New York, where

the probability of automobile crashes is known. The motivation behind choosing this as our study region is

twofold. First, the Emergency Medical Services (EMS) response time in rural areas is much greater than in

urban areas, and it is precisely these areas of the County in which ACN offers the greatest promise. Sec-

ondly, for the consistency of our study, we used the same rural crash data as the one discussed in Akella

et al. (2003).

6.1. Background information

Rural areas of Erie County represent villages and towns excluding the City of Buffalo and its immediate

suburbs. They cover approximately 61% of the county. The rural areas are slightly hilly, especially in



Fig. 3. Location of crash, demand nodes and potential base stations in rural Erie County, New York.
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the southeastern corner. The population density in 2000 was 72 people per square kilometer (NYSDOT,

2000).

6.2. Data

For emergency nodes, the location of the 210 rural crashes of 1995 discussed in Akella et al. (2003) was

used. The demand nodes were represented using the centroid of rural census blocks. A census block is a

small area bounded by a series of street, roads, railroads, streams or any visible features. Census blocks are
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the smallest geographic areas for which the Census Bureau collects and tabulates decennial census data.
The total population of each census block (Census, 2000) was assigned to its centroid. There are 2336

census block centroids in rural Erie County. A total of 1824 blocks were used since some do not contain

population information. Fig. 3 shows the distribution of the demand and crash nodes in rural Erie County.

Five hundred candidate BS locations were chosen from among the 1824 demand nodes in the region. The

choice was made based on the spatial distribution of demand. The coverage radius of each BS is assumed to

be 3 km. However, in case a crash node is not covered by any of the candidate BSs, it is then assumed to be

covered by the BS closest to it. The radius of coverage has been chosen to be 3 km based on the results of
Fig. 4. Optimal base station locations in rural Erie County (3% optimality gap).



Table 6

Case study results (Lagrangean performance)

No. of base stations CPLEX Lagrangean heuristic

Solution Time (seconds) Average % optimality

gap (preset)

Average

iterations

Average time

(seconds)

51 NA NA 4.973(5) 373.75 3983.50

51 NA NA 2.829(3) 718 7194.75

51 NA NA 1.834(2) 1077.50 16,947.75

Number of demand nodes¼ 1824; number of crash nodes¼ 210; potential number of base stations¼ 500; coverage radius¼ 3; channel

capacity¼ 80,000; number of time slots¼ 10.
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experiments in Delmelle et al. (submitted for publication). They empirically tested the decay of RSSI value

with distance from a base station. From their results it was found that a 3 km distance yields a strong signal
that essentially guarantees call completion (assuming the availability of a channel). In summary, our

problem is to find 51 optimal BS locations that cover the crash nodes and maximally cover the demand

nodes.

6.3. Results

The performance of the Lagrangean heuristic is shown in Table 6. The problem was solved for three

different instances each with a preset optimality gap of 5%, 3% and 2% respectively. For each value of the
preset optimality gap, we ran four different instances and then report the average performance. This means

that the heuristic would terminate if it finds a feasible solution within the preset optimality gap. The in-

stances are different in terms of the locations of the candidate BSs and the values of the demands over all

the time slots. Note that the same problem has not been solved for each instance. An entirely different

problem was created and solved. This has been done to ensure the performance of the heuristic over a range

of problems and simultaneously to study the solution time with increasing complexity. NA under the

CPLEX column indicates that the solver was unable to find a feasible solution. In fact for these problem

instances, the solver fails to read the input format files. The problem size is roughly 10 million variables and
an equal number of constraints.

From our computational experience for this class of problems, we observed that the Lagrangean

starts with an initial optimality gap of around 35% (this is the gap between the starting solution and the

first upper bound obtained) and improves it to less than 5%. This is a remarkable improvement in the

gap though the actual solution improves by around 10%. We have the liberty of stopping the solution

at any preset gap to work a tradeoff with solution time. The solution time increases greatly as the

optimality gap is reduced. As shown in the table, with a preset gap of 2% the heuristic takes nearly 5

hours 30 minutes to solve the problem. But this is reasonable considering the fact that the solver fails to
read the problem. Fig. 5 shows the subgradient search behavior for a solution with 5% optimality gap.

The solution starts with a large initial gap between the upper and lower bounds. The gap later reduces

to less than 5%. This figure visually demonstrates the classical subgradient optimization search tech-

nique.

The optimal location of the Base Stations and the coverage obtained by the solution is shown in Fig.

4. Note that there is a link connecting uncovered crash nodes to BSs. This should be interpreted as that

crash node being covered by a BS to which it is connected by a link. As explained before, this was a

measure taken to avoid unwanted infeasibilities in the problem. As is seen from the figure, we have BSs
located in those regions where the demand density is high and where there are crash nodes. The cov-

erage area shown in the figure is a buffer drawn around a BS with 3 km radius. This would be the
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Fig. 5. An example of subgradient search for case study––5% gap.
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coverage of a BS with respect to the demand nodes. There are a lot of uncovered demand nodes in the

final solution. This is due to the fact that the number of BSs was limited to 51. Increasing this number

would give better coverage with respect to the demand nodes while maintaining the coverage of the
crash nodes.
7. Conclusions and future research

A cellular network design problem has been addressed from the perspective of emergency notification.

The problem has been formulated as a Mixed Integer Program (MIP). Several properties that help in

gaining a deeper insight into the problem structure have been developed. Four different solution techniques
have been proposed that produce high quality solutions in reasonable time. Finally, a Lagrangean heuristic

is developed that takes a starting solution from one of the above heuristics and performs a subgradient

search to improve the optimality gap. Results show that the Lagrangean heuristic performs remarkably

well when compared to the ILOG CPLEX solver for all kinds of problem sizes. Finally, a case study is

presented that applies this solution technique to a practical problem in the rural sections of Erie County,

New York.

The Lagrangean heuristic technique developed can be further improved in terms of its computation time

by exploiting the LP nature of the knapsack problem. Instead of solving it as a knapsack every time the
multiplier is updated, one can input the problem to CPLEX after some preprocessing. The main reason

behind this is that at successive iterations, we are effectively solving the same problem with some changed

coefficients. With the use of certain features embedded in CPLEX to re-optimize a LP problem, the

computational burden of re-solving it from the beginning may be reduced. Also, efficient preprocessing

techniques can be incorporated in the heuristic to eliminate redundant variables and constraints. This is a

suggested future research direction.

Though we assumed that the signal strength varies deterministically, in reality it does not do so. There

would be a probability associated with covering a customer at a given point. A stochastic model that
incorporates this feature and maximizes the expected coverage would come closer to real world problems

in rural areas, where emergency coverage is important. This is another suggested future research direc-

tion.
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