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The Black–Derman–Toy (BDT) model is a popular one-factor interest rate model that is widely used by practitioners.
One of its advantages is that the model can be calibrated to both the current market term structure of interest rate and
the current term structure of volatilities. The input term structure of volatility can be either the short term volatility or
the yield volatility. Sandmann and Sondermann derived conditions for the calibration to be feasible when the
conditional short rate volatility is used. In this paper conditions are investigated under which calibration to the yield
volatility is feasible. Mathematical conditions for this to happen are derived. The restrictions in this case are more
complicated than when the short rate volatilities are used since the calibration at each time step now involves the
solution of two non-linear equations. The theoretical results are illustrated by showing numerically that in certain
situations the calibration based on the yield volatility breaks down for apparentlyplausible inputs. In implementing the
calibration from period n to period n + 1, the corresponding yield volatility has to lie within certain bounds. Under
certain circumstances these bounds become very tight. For yield volatilities that violate these bounds, the computed
short rates for the period (n, n + 1) either become negative or else explode and this feature corresponds to the
economic intuition behind the breakdown.
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1. Introduction

The modern approach to the modelling of stochastic interest rates started with the classic paper by
Vasicek (1977). The early models postulated a stochastic differential equation for the evolution of
the short rate of interest and, by invoking no-arbitrage arguments, developed expressions for the prices
of pure discount bond and other securities of interest such as options. Other examples of such
models include Brennan and Schwartz (1979) and Cox, Ingersoll and Ross (1985). One of the problems
with these models was that they did not have enough degrees of freedom to match the model prices
of pure discount bonds with the corresponding market prices. This was an uncomfortable situation
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since the model could not be described as arbitrage free when the model prices differed from the current
market prices.

One way to resolve this problem is to make the parameters of the short term rate time dependent. In the
Vasicek case, the resulting model is known as the extended Vasicek model. This approach has been
popularized by Hull and White (1993). Another approach is to model the uncertainty by assuming a
stochastic process for the evolution of the forward rate. Since this approach starts from the current
observed forward rate, the market prices of today’s zero-coupon bonds are built directly into the
foundations of the model. The � rst paper to apply this approach was Ho and Lee (1986) in a discrete-time
framework. Subsequently Heath, Jarrow and Morton (1990) (HJM) provided a much more extensive and
rigorous approach in continuous-time framework. The HJM model is quite general; it can be calibrated to
current bond prices and option prices. In practice, the model parameters are selected by � tting model
prices to the current market prices of the most liquid instruments. From a trading perspective, this
approach is useful since the model reproduces market prices over for the most liquid traded securities.1

For many pricing applications, it is convenient to have a simple binomial type model that � ts the
current term structure of bond prices and the current term structure of volatilities. In this connection, the
Black, Derman and Toy (1990) (BDT) model is a widely used model that can be calibrated to match the
term structure of zero-coupon bond prices and the term structure of volatilities. In the original BDT paper,
the authors used the yield volatilities as the input term structure of volatility. The yield volatility
corresponds to the volatility of the yields on long term bonds. In practical applications, it is often more
convenient to use the term structure of short rate volatilities since they can be directly inferred from the
market prices of interest rate caps.

Thus, there are two ways to calibrate the BDT model. The � rst one is the short rate volatility method
which uses

the current term structure of zero coupon bond prices;
the term structure of future short rate volatilities.

The second one is the yield rate volatility method which uses

the current term structure of zero coupon bond prices;
the term structure of yields on zero coupon bonds.

For each of these approaches it is of interest to investigate the conditions under which � tting the BDT model
results in a reasonable calibration. Our conditions for a reasonable calibration are quite weak. We will require
that all the short rates and all the output volatilities2 in the calibrated BDT model are positive. Sandmann and
Sondermann (1993) have analysed the case when the BDT calibration is based on the short rate volatilities.
They provide necessary and suf� cient conditions for this to happen. Their result is: if the current implied
forward rates are all positive (i.e. the pure discount bond price declines as the time to maturity increases) and
the short rate volatilities are all positive, then it is possible to calibrate the BDT model. Their conditions are
simple from a mathematical perspective and have an intuitive economic interpretation.

1 This approach has disadvantages from an econometric perspective since, by � tting new parameters on a daily basis, we are
effectively assuming a new model every day.
2 The output volatility under the � rst approach is the yield volatility as computed from the calibrated BDT model since the input
volatility is the short rate volatility. The output volatility under the second approach is the short rate volatility as computed from the
calibrated BDT model since the input volatility is the yield rate volatility.
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This paper investigates the conditions under which we can calibrate the BDT model when the yield
volatility is used. We derive the precise mathematical conditions which the input data must satisfy so that the
BDT model can be calibrated. These conditions are less elegant than in the case when the short rate volatility
is used. However, we � nd that it is not possible to calibrate the BDT model for seemingly plausible input
term structures. To obtain our conditions we use results from the theory of polynomial equations.

The outline of the rest of the paper is as follows. In the next section, we review the details of the
procedure that is used to calibrate a BDT model. We examine both the original and modi� ed BDT models
which calibrate to the term structure of yield volatilities and short rate volatilities respectively. We show
that the calibration equations can be reduced to a system of polynomial equations so that we can draw on
results from the so-called Quanti� er Elimination; an algebraic approach that provides conditions for
polynomials to have real roots. In Section 3, we provide a detailed analysis of the calibration of a three-
period BDT model. We provide both necessary and suf� cient conditions for the calibration to be feasible.
The conditions are quite complicated even in the three period case and it appears dif� cult to extend this
type of analysis to the n periods case. Hence in Section 4, we provide a suf� cient condition for calibration
to be feasible from the nth step to the (n + 1)th step given that the calibration was successful for the
preceding n periods. In Section 5 we provide several examples which illustrate the conditions developed
in Section 4. The � nal section concludes the paper.

2. Calibration of the BDT model

In this section, we review the procedure used to calibrate a BDT interest rate model. In this model, a
recombining binomial lattice is constructed so that it matches the current yield curve and the current yield
volatility curve. We assume the calibrated binomial lattice has N periods and each period is of size t
years. Hence the total time horizon of the binomial lattice is T = N t years. The recombining nature of
the binomial lattice ensures that at time period n, there are n + 1 states. We label these states as i = 0, 1, . . .,
n. Let r(n, i) be the (annualized) one-period short rate at period n and state i. The short rate r(n, i) evolves
either to r(n + 1, i) (i.e. down-state) or to r(n + 1, i + 1) (i.e. up-state) one period hence with equal
risk-neutral probability.

Let Ŷ (0, n) Ŷ (n) be the current (market) yield on a n-period zero-coupon bond (i.e. with maturity
n t) and ^Y (n) be the corresponding current yield volatility. Then the price of an n-period zero-coupon
bond, P̂ (0, n) P̂ (n), is given as

P̂(n) ˆ ‰1 ‡ Ŷ (n) tŠ¡n (1)

Similarly, let P (n) and Y (n) denote the model price and model yield of an n-period zero-coupon bond and
Y (n) denote the volatility corresponding to the n-period yield implied from the model. In other words,

the set {P(n), Y(n), Y(n)} is similar to {P̂ (n), Ŷ (n), ^Y (n)} except that the � rst set of values is computed
from the model while the second set is the market inputs. We calibrate the model to the market by ensuring
that P(n) = P̂ (n) and Y (n) = ^Y (n) for all n = 1, 2, . . ., N.

Let us denote the two possible yield realizations at period 1 (i.e. nodes (1, 0) and (1, 1)) on a zero-
coupon bond which matures at the end of period n by Yd (n) and Yu (n). In the BDT model, these two
yields are related by

Yu(n) ˆ Yd(n) exp ‰2 Y (n)
�������

tŠ
p

(2)
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In a similar manner, let Pd (n) and Pu (n) denote the prices of zero-coupon bonds corresponding to the
yields Yd(n) and Yu (n), respectively. Therefore, Pd(n) and Pu(n) represent bonds with (n ¡ 1) t years to
maturity and are related to Yd(n) and Yu(n) as follows

Pd(n) ˆ 1

‰1 ‡ Yd(n) tŠn¡1

Pu(n) ˆ 1

‰1 ‡ Yu(n) tŠn¡1

We also have the following relationship:

P(n) ˆ 1
2‰1 ‡ r(0, 0) tŠ ‰Pd(n) ‡ Pu(n)Š (3)

As pointed out by Jamshidian (1991), the calibration procedure is facilitated by the use of a forward
induction technique. This involves using the Arrow–Debreu securities, which are de� ned as follows.
Assume we have a security which pays one unit at time n in state i and zero elsewhere and let A(n, i)
denote the price at node (0, 0) of this Arrow–Debreu security. The Arrow–Debreu security is sometimes
referred to as the Green’s function because of its continuous-time analogue.

The Arrow–Debreu prices satisfy the following recursive relation:

A(n,i) ˆ

A(n ¡ 1,i ¡ 1)
2‰1 ‡ r(n ¡ 1,i ¡ 1) tŠ , i ˆ n

A(n ¡ 1,i ¡ 1)
2‰1 ‡ r(n ¡ 1, i ¡ 1) tŠ

‡ A(n ¡ 1, i)
2‰1 ‡ r(n ¡ 1, i) tŠ , i ˆ 1, 2, . . . , n ¡ 1

A(n ¡ 1, i)
2‰1 ‡ r(n ¡ 1, i) tŠ , i ˆ 0

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

The model price of an n-period zero-coupon bond can be written in terms of Arrow–Debreu
prices as

P(n) ˆ
Xn

iˆ0

A(n, i† (4)

without having to work backwards through the lattice one period at a time to obtain the required value.3

Let Ad(n, i) denote the Arrow–Debreu price at node (1, 0) of a contingent claim that pays $1 if state i is
realized in period n and zero otherwise. Similarly, let Au(n, i) denote the corresponding price of the
Arrow–Debreu security at node (1, 1). Then, Pd(n) and Pu(n) can be computed from Ad(n, i) and Au(n, i) as

Pu(n) ˆ
Xn

iˆ0

Au(n, i)

3 More generally, if X(n, i) denotes the payoff of a European contingent claim at node (n, i), then the price of the contingent claim at
node (0, 0) is conveniently computed as n

iˆ0 A(n, i) X(n, i).
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Pd(n) ˆ
Xn

iˆ0

Ad(n, i)

Note that Ad(n, n) and Au(n, 0) are zero for all n.
In calibrating a (N + 1)-period binomial lattice, the task reduces to � nding the values of r(n, i), for

n = 0, 1, . . ., N, i = 0, 1, . . ., n, for which the model values are consistent with the input market values.
Normally this is carried out one time step at a time. For instance, in the (n + 1)th period calibration, the
task is to � nd r(n, i), i = 0, 1, . . ., n so that the resulting lattice matches the input Ŷ (n + 1) and ^Y (n + 1),
assuming that all the earlier short rates, r(m, i), m = 0, 1, . . ., n, i = 0, . . ., m have already been calibrated to
the input term structures {Ŷ (m), ^Y (m), m = 0, 1, . . ., n}. In other words, the (n + 1)th period calibration
involves solving the following non-linear equations:

a n‡1 ˆ P̂(n ‡ 1) ˆ P(n ‡ 1) ˆ
Xn

iˆ0

A(n, i)

1 ‡ r(n, 0)(b n)i t
(5)

u¡1 ¡ 1 ˆ ( ¡1 ¡ 1) n‡1 (6)

where

un ˆ
Xn

iˆ0

Au(n, i)

1 ‡ r(n, 0)( b n)
i t

(7)

n ˆ
Xn

iˆ0

Ad(n, i)

1 ‡ r(n, 0)( b n)i t
(8)

n‡1 ˆ e2^Y (n‡1)
����

t
p

(9)

un ‡ n ˆ 2
a n‡1

a 1
(10)

Note that the non-linear Equations 5 and 6 contain only two unknowns, r (n, 0) and n. These equations
have to be solved numerically for r(n, 0) and n and methods such as the Newton–Raphson iteration
approach are often used. Once these unknowns are determined, the short rates in other states are computed
via the following recursive relationship among the short rates in each period:

r(n, i) ˆ r(n, 0)( b n)
i

for i = 1, 2, . . ., n.
For n = 1 or 2, the calibration is simple. The required short rates are determined as

r(0, 0) ˆ Ŷ (1) (11)

r(1, 0) ˆ
(1 ¡ 2)(1 ¡ 2 a 2

a 1
) t ‡

����
D

p

4 a 2
a 1 2( t)2

(12)

r(1, 1) ˆ r(1, 0) 2 (13)
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where

D ˆ
h
(1 ¡ 2) 1 ¡ 2

a 2

a 1
t
i2

‡ 16
a 2

a 1
2( t)2 1 ¡ 2

a 2

a 1

For these short rates to be positive and not exceeding the maximum rate !, the following conditions on the
market input must be satis� ed:

Ŷ (1) ! (14)

! t(1 ‡ 2) ‡ 2 2

2! t(1 ‡ ! t ‡ 2) ‡ 2 2

a 2

a 1
1 (15)

To verify that most reasonable term structures satisfy the second inequality, we � rst note that the left-hand
most expression is an increasing function of 2 and converges to (2 + ! t)/2(1 + ! t) as 2 ! 1.
Suppose f1 is the one-period forward rate from period 1 to period 2; i.e. 2(1 + f1 t) = 1. Then any f1 that
satis� es the the following inequality

0 f1
!

2 ‡ ! t

also satis� es (15). In practical situations, setting ! = 1 (or 100%) would be a very conservative upper
bound. Also t is usually less than 1 year. If we assume ! = 1 and t = 1, the upper bound on f1 is 1/3.
This implies that as long as the forward rate f1 is positive and does not exceed 33%, inequality (15) is
satis� ed and the calibration is feasible for any positive input ^Y (2). This provides a justi� cation that most
reasonable input term structures satisfy inequalities (14) and (15).

It is nontrivial to extend the calibration to one more period; i.e. from period 2 to period 3.4 In the next
section we will analyse the calibration issues for the three-period BDT model.

We now explain a general method to handle the non-linear Equations 5 and 6 using elimination
theory. The original system of non-linear equations over the two unknown variables r(n, 0) and n

can be expressed as a system of non-linear equations over the four unknowns r (n, 0), n, u and . More
precisely, Equations 5, 6, 7 and 8 can be expressed as four polynomial equations. This allows us to invoke
an important set of results from classical algebra known as Quanti� er Elimination (QE). The QE provides
a methodology to solve polynomial equations. The underlying principle can be summarized as follows:
suppose we are given several polynomial equations. To see if a given polynomial equation has real
solutions, it suf� ces to check if the coef� cients of the polynomial equations satisfy certain conditions. A
more precise statement of this is given in Appendix A. As a familiar illustration, let us consider the
quadratic equation ax2 + bx + c = 0. In this case, we only need to check whether the coef� cients (a, b, c)
satisfy the relation b2 ¡ 4ac 0 for real solutions to exist.

We now consider a simple example using QE. Suppose we are interested in � nding criteria for the
existence of real solutions r(n, 0) in the range (a1, a2), where a1 < a2. Let us introduce two new variables x
and y, so that r(n, 0) = a1 + x2 and r(n, 0) = a2 ¡ y2. The elimination theory provides conditions among the
coef� cients of the polynomial equations such that rn, 0

2 (a1, a2) if and only if the coef� cients satisfy
certain relations.

Although elimination theory is constructive in the sense that there are algorithms for � nding the
relations among the coef� cients, all algorithms are either impractical or very complicated to implement.
4 Our colleague, Ken Vetzal pointed out that extensions of results from n = 2 to n = 3 are sometimes not very easy and cited Fermat’s
Last Theorem as an illustration.
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Even in the three-period BDT model, which we will discuss in the following section, the most ef� cient
algorithm for QE is already dif� cult to handle. In subsection 3.2, we give an ef� cient algorithm for our
problem in the three-period BDT model using ideas from QE.

2.1 Calibration of the modi� ed BDT model

In this subsection, we brie� y discuss a modi� ed version of the BDT model which takes the term structure
of short rate volatilities as input instead of the term structure of yield volatilities. In this case, the
calibration is a lot simpler. First, the term structure of short rate volatilities can be inferred from the market
prices of interest rate caps. Second, the calibration reduces to solving one non-linear equation since under
the assumption of lognormality of the short rates, we have

r(n, i) ˆ r(n, i ¡ 1)e2 r…n†
����

t
p

, for i ˆ 1, 2, . . . , n

where ^r (n) is the input short rate volatility for the nth period. In other words, the parameter n in (5)
becomes known and is equivalent to e2^r(n)

����
t

p
. Hence there is only one equation with one unknown for

this calibration.
For the modi� ed BDT model, Theorem 2.1 of Sandmann and Sondermann (1993) provides a necessary

and suf� cient condition under which it is possible to calibrate a BDT model as long as the short rate
volatilities are positive and � nite. They show that there exists a BDT model (with positive short rates) if
and only if the forward rates are positive. This result can easily be shown as follows:

Suppose the modi� ed BDT model has been calibrated up to period n. To proceed one more period, we
need to solve the following equation (from (5))

a n‡1 ˆ
Xn

iˆ0

A(n, i)

1 ‡ r(n, 0)b i
n t

(16)

where n = e2 r̂…n†
����

t
p

. Let fn be the one-period forward rate from period n to n + 1. Then we have

1
1 ‡ fn t

ˆ a n‡1

a n
ˆ

Xn

iˆ0

ai

1 ‡ r(n, 0)b i
n t

where

ai ˆ A(n, i)
a n

0

and i ai = 1 since i A(n, i) = n.
If r(n, 0) i

n are positive for all 0 i n,
then

1

1 ‡ r(n, 0)b i
n t

2 (0, 1)

This implies that the convex combination
X n

iˆ0

ai

1 ‡ r(n, 0)b i
n t

2 (0, 1)

Consequently, we must have fn > 0.

Calibrating the Black–Derman–Toy model 33



Conversely, suppose fn > 0. We need to show that there exists a unique positive number r(n, 0) such
that (16) holds. Let

h(x) ˆ
Xn

iˆ0

ai

1 ‡ xb i
n t

¡ 1
1 ‡ fn t

First note that h(x) is strictly decreasing. Second, by assumption we have

h(0) ˆ 1 ¡ 1
1 ‡ fn t

> 0

Third,

h( ‡ 1) ˆ ¡ 1
1 ‡ fn t

< 0

This implies that there exists a unique positive root for h(x) = 0, as required.

3. Three-period BDT model

3.1 A suf� cient condition

In this section, we consider the calibration issue for the original three-period BDT model. We assume
that the � rst two periods have already been calibrated successfully so that we only need to � nd r(2, 0),
r(2, 1), and r(2, 2) such that the resulting interest rate lattice matches to the input term structures Ŷ (3)
and ^Y (3). Although this is only the third period calibration, we show that the BDT lattice may not
exist for certain term structures. To examine these conditions, we � rst note that eliminating v in (6) and
(10) with n = 2, the parameter u becomes the root of a polynomial equation of degree 4; i.e. g1

(u) = 0 where

g1(x) ˆ x4 ‡ 2

3 ¡ 1
x3 ‡

h 2
3 ‡ 1

( 3 ¡ 1)2
¡ 2 a 3

a 1

i
x2 ¡ 4 a 3

a 1( 3 ¡ 1)
x ¡ 2 a 3

a 1( 3 ¡ 1)2
(17)

The � rst result can be stated as follows:

Theorem 1 If there exist positive short rates in the interval (0, !), then

g1( (!)) > 0,

where

(x) ˆ min

( ����������������������������
1

1 ‡ r(1, 1) t

s

,

�����������������������������������������������������������������
2 a 3

a 1
¡ 1

‰1 ‡ r(1, 0) tŠ(1 ‡ x t)

s )

:

In other words, if g1 ( (!)) 0, then there exists no positive short rates in the interval (0, !).

Proof: See Appendix B.
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A consequence of the above theorem is that calibration of the BDT model is not feasible when the yield
curve is increasing sharply while the yield volatility curve is decreasing dramatically. This observation can
be veri� ed as follows:

Substituting (!) into (17), we obtain

g1( (!)) ˆ (!)4 ¡ 2 a 3

a 1
(!)2 ‡ 1

3 ¡ 1
2 (!)3 ¡ 4a 3

a 1
(!) ‡ 1

( 3 ¡ 1)2
( 2

3 ‡ 1) (!)2 ¡ 2a 3

a 1

Assuming that the yield volatility is positive, we have 3 > 1. Notice that the terms in the � rst two square
brackets are always negative. This implies that g1( (!)) 0 if the term in the third bracket is also
negative; i.e.

( 2 ‡ 1) (!)2 <
2 a 3

a 1

Hence we have the following corollary:

Corollary 2
(a) Suppose

(!) ˆ

������������������������������������������������������������������
2 a 3

a 1
¡ 1

‰1 ‡ r(1, 0) tŠ(1 ‡ ! t)

s

There exists no short rates {r(2, 0), r(2, 1), r(2, 2)} in the range (0, !) if

Y (3) ¡ 1

4
������

t
p log

2 a 3

a 1
‰1 ‡ r(1, 0) tŠ(1 ‡ ! t) ¡ 1 (18)

and

a 1 < 2 a 3‰1 ‡ r(1, 0) tŠ(1 ‡ ! t)

(b) Suppose

(!) ˆ

��������������������������
1

1 ‡ r(1, 1) t

s

There exists no short rates {r(2, 0), r(2, 1), r(2, 2)} in the range (0, !) if

Y (3)
1

4
������

t
p log

2 a 3

a 1
‰1 ‡ r(1, 1) tŠ ¡ 1 (19)

and

a 1 < 2 a 3‰1 ‡ r(1, 1) tŠ

3.2 Necessary and suf� cient conditions

Theorem 1 established a suf� cient condition for the third period calibration to be feasible. In this
subsection, we provide a necessary and suf� cient condition for the short rates to lie in the interval (0, !),
where ! > 0.
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We assume the largest short rate lies on the top branch of the BDT lattice and denote it as y*, then the
other two short rates in the third period are y*/ 3, y*/ 2

3, where 3 1. Since y* is the largest attainable
rate, it is suf� cient to consider the conditions on y* for which it lies in (0, !).

From (7) and (8), u and v must satisfy the following equations:

1
1 ‡ y

‡ 1
1 ‡ y= b

ˆ 2(1 ‡ c)u2 (20)

1
1 ‡ y= b

‡ 1

1 ‡ y= b 2 ˆ 2(1 ‡ b) 2 (21)

where = 3, y = y* t, b = r(1, 0) t and c = r(1, 1) t. The assumption that 1 implies that the
bound on is

B1 B2 (22)

where

B1 ˆ
�������������������������������
2a 3

a 1

1 ‡ c

2 ‡ b ‡ c

r
and B2 ˆ

����������������������������������������������
2 a 3

a 1
¡ 1

(1 ‡ c)(1 ‡ !)

s

De� ne m and n as

m ˆ 1
2(1 ‡ c)u2

ˆ 1
2(1 ‡ c)(2 a 3

a 1
¡ 2)

(23)

n ˆ 1
2(1 ‡ b) 2

(24)

Note that m n since 1. Substituting the above expressions m and n into (20) and (21), we obtain

y2 ‡ (b ‡ 1)(1 ¡ m)y ‡ (1 ¡ 2m)b ˆ 0 (25)

y2 ‡ b ( b ‡ 1)(1 ¡ n)y ‡ (1 ¡ 2n)b 3 ˆ 0 (26)

Eliminating the y2 term gives

y ˆ b ‰2m ¡ 1 ¡ (2n ¡ 1)b 2Š
( b ‡ 1)‰(n ¡ 1)b ¡ (m ¡ 1)Š

or

y* ˆ b ‰2m ¡ 1 ¡ (2n ¡ 1)b 2Š
t(b ‡ 1)‰(n ¡ 1)b ¡ (m ¡ 1)Š

(27)

To ensure that the condition 0 y* ! is satis� ed, we need to consider the cases where the denominator
in (27) is either positive or negative.

Case 1: (n ¡ 1) ¡ (m ¡ 1) > 0
In this situation, the only admissible case is n > 1. Here is why this is the only case.

If n = 1 then ¡ (m ¡ 1) > 0 which implies that m < 1 contradicting the assumption that m n.
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If n < 1, then < (1 ¡ m)/(1 ¡ n) < 1 because (m n) and this contradicts the assumption that 1.
For n > 1, the conditions on are

b >
m ¡ 1
n ¡ 1

(28)

b

����������������
2m ¡ 1
2n ¡ 1

r
(29)

and

! t(b ‡ 1)‰(n ¡ 1)b ¡ (m ¡ 1)Š ¡ b ‰2m ¡ 1 ¡ (2n ¡ 1)b 2Š > 0 (30)

Let 1 be the expression on the left-hand side of the above inequality with m and n replaced by (23) and
(24). 1 becomes a function in terms of the unknown variables v and . An equivalent condition to (30)
becomes

1( b , ) > 0 (31)

where v is a root (satisfying the boundary condition (22)) of the function g2 de� ned as

g2(x) ˆ x4 ‡ 2 3

3 ¡ 1
x3 ‡

h 2
3 ‡ 1

( 3 ¡ 1)2 ¡ 2 a 3

a 1

i
x2 ‡ 4 a 3 3

a 1( 3 ¡ 1)
x ¡ 2 a 3 3

a 1( 3 ¡ 1)2 (32)

The above function is derived from (6) and (10) by eliminating u.5 Inequality (31) provides one condition
for which and v must be jointly satis� ed.

In a similar manner, we de� ne

2 ˆ b ¡ m ¡ 1
n ¡ 1

and

3 ˆ b 2 ¡ 2m ¡ 1
2n ¡ 1

and substituting (23) and (24) into the above two expressions. Inequalities (28) and (29) are respectively,
equivalent to

2( b , ) > 0 (33)

3( b , ) < 0 (34)

For a given root v, there may exist many possible values of for which conditions (31), (33), and (34)
are ful� lled. Hence we need another condition on so that the uniqueness of is ensured. This is
achieved by substituting (27) into (25). If we denote the resulting expression by 4( , v), is then
computed from the following equation

4( b , ) ˆ 0 (35)

The above series of steps provides necessary conditions for which the short rates lie in the required
range (0, !). It remains to consider the other situation where the denominator in (27) is negative. In

5 Alternatively, g2 (x) can be obtained from g1(x) by replacing 3 in (17) by 1/ 3.
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this case, there are two admissible possibilities depending on the value n. We summarize the results as
follows:

Case 2a: (n ¡ 1) ¡ (m ¡ 1) < 0 and n > 1
Using the above notation, the conditions on v and are

1(b , ) < 0

2(b , ) < 0

3(b , ) 0

4(b , ) ˆ 0

Case 2b: (n ¡ 1) ¡ (m ¡ 1) < 0 and n 1
In this case, the conditions on v and are

1(b , ) < 0

2(b , ) > 0

3(b , ) 0

4(b , ) ˆ 0

From the above discussion, we also know that the process can be reversed. The reason is as follows:
the inequality B1 v B2 implies that m n. Then in case 1, both relations 2( , v) > 0 and 3( , v) < 0
imply that y > 0, and 1( , v) > 0 yields y* < !. Then both relations 4( , v) = 0 and g2 (v) = 0
are equivalent to the original non-linear relations (5) and (6). The results for Cases 2a and 2b are
similar.

To conclude this section, we provide an algorithm which checks the existence of the third period BDT
short rates in (0, !).

Step 1. First check whether the equation g2(v) = 0 has a solution in the range (B1, B2). This can
be accomplished using Sturm’s algorithm (see Appendix C for a brief description). Alternatively, some
mathematical software packages such as Maple have a built-in version of Sturm’s algorithm. If no such
root v exists, stop.

Step 2. If there exists such roots, there are at most four roots. Since the degree of g2 is 4, these roots can
be found relatively easily. For each v, we obtain the corresponding by solving 4( , v) = 0. Sturm’s
algorithm can again be used as a � rst step to check the existence of the root. If the root exists, then go to
step 3; otherwise stop.

Step 3. For each root (only � nitely many) and v, compute m and n using (23) and (24) and check if any
of the following conditions holds:

‰3:1Š: 1( b , ) > 0, 2(b , ) > 0, 3(b , ) < 0 and

������������������
1

2(1 ‡ b)

s

:

6

6 The last condition on v is equivalent to the condition n 1.
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‰3:2aŠ: 1(b , ) < 0, 2( b , ) < 0, 3(b , ) 0 and

��������������������
1

2(1 ‡ b)
:

s

‰3:2bŠ: 1( b , ) < 0, 2(b , ) > 0, 3( b , ) 0 and

��������������������
1

2(1 ‡ b)
:

s

If one of the above conditions holds, then there exists short rates, say y*, y*/ , y*/ 2, in the range
(0, !), where y* can be determined from (27). Otherwise, positive short rates in the range (0, !) do
not exist.

4. General case

In the previous section, we provided a necessary and suf� cient condition for the existence of the
positive short rates for the three-period BDT model. We saw that even with three periods, the task was
already very challenging. Hence it seems virtually impossible to extend the methodology to the general
n-period case.

In this section we assume for a given input term structures, the model has been calibrated (successfully)
up to n periods. We then provide a suf� cient condition that jointly characterizes Ŷ (n + 1) and ^Y (n + 1)
for which the calibration would fail in the (n + 1)th period. More precisely, we summarize the result in the
following theorem.

Theorem 3 Let a = ‰Pd(n)Š
1
n, b ˆ ‰Pu(n)Š

1
n, and

(x) ˆ
x

1 ¡ x
2

a n‡1

a 1
¡ xn

¡1
n

¡ 1

" #

(36)

for x > 0. Assume for any arbitrary term structure, the BDT model has been calibrated up to n periods. In
the calibration to the (n + 1)th period, there exists no positive short rates if the inputs Ŷ (n + 1) and ^Y

(n + 1) satisfy any of the following conditions:

(i) ^y(n ‡ 1) >
1

2
������

t
p log( (a)) (37)

(ii) ^y(n ‡ 1) <
1

2
������

t
p log

1
(b)

(38)

Proof: See Appendix D.

Remark 1. The proof to the above theorem only requires the monotone-property of the two-variable
function f (x, y) and the basic relation among the Arrow–Debreu securities. The same conclusion applies to
any interest rate tree as long as the short rates satisfy the BDT relations; i.e. r(n, i) = i(n, 0) i

n, 8n, i.

Remark 2. If (a) (b) 1, then there exists no positive short rates in the (n + 1)th period regardless of the
value ^y(n + 1).

Calibrating the Black–Derman–Toy model 39



5. Numerical examples

In this section, we present numerical examples which illustrate the calibration issues based on the results
established in the earlier sections.

Table 1 gives details of the cases which we used to construct N-period BDT models. In particular, the
� rst three examples, (a), (b), and (c), have identical term structures in the sense that all three of them have
a � at yield volatility of 20% while the yield curve is decreasing linearly from 8% to 4% over one year
horizon. The only difference is the number of time steps � tted to these term structures. Example (a) uses 4
periods, (b) uses 12 periods, while (c) uses 52 periods. This accounts for the difference in magnitude of t
reported in the third row of the table. In each of these examples, we did not encounter any problem in
constructing the BDT models (for varying N).

Suppose we make a minor change to the input yield volatilities in these examples (a), (b), and (c) and
attempt to re-calibrate the BDT lattice. The minor change is by perturbing the N-period yield volatility
from 20% to 19% (i.e. ^Y (N) = 19%). In all three situations, we found that we can only calibrate up to
N ¡ 1 periods and fail in the Nth period. It might be argued that this phenomenon results from to the
numerical methods used to solve the two non-linear equations (5) and (6), for instance, if a Newton–
Raphson procedure were used to solve these equations. Failure to � nd convergence does not necessary
imply that there exists no solution. This could merely be due to a poor set of bad initial values in carrying
out the iteration process. It is well-known that the convergence of the Newton–Raphson algorithm
crucially relies on the initial values.

We now show that Theorem 3 can be used to explain the failure to calibrate the nth period short rates.
In N ¡ 1 periods, the quantities Pd(N ¡ 1) and Pu(N ¡ 1) are readily available. From the assumed value of
the N-period yield (i.e. Ŷ (N)), we can determine which condition(s) in Theorem 3 is(are) satis� ed and
hence � nd the appropriate bound of ^Y (N) for which positive short rates in the Nth period are not possible.
It turns out that in all three cases, either condition (i) or condition (ii) is satis� ed. The ranges on the yield
volatilities are reported in Table 2. For instance for case (a), there does not exist positive short rates in the
fourth period when the yield volatility is either greater than 20.568% or less than 19.238%. In our
modi� ed examples, we have ^Y (4) = 19%, which falls in the required range. This explains the failure in
solving the fourth period short rates that calibrate to this yield volatility. It should be emphasized that the
above result is based on our theory and is independent of the numerical techniques.

Table 1. Examples of input term structures.

Example (a) (b) (c) (d ) (e) ( f )

N 4 12 52 52 10 10
t (yrs) 1/4 1/12 1/52 1/12 1/4 1/12

T = N t (yrs) 1 1 1 4 1
3 2 1

2
5
6

Ŷ (1) 8% 8% 8% 8% 10% 10%
Ŷ (N) 4% 4% 4% 4% 5% 5%
^Y (1) 20% 20% 20% 20% 20% 20%
^Y (N ) 20% 20% 20% 20% 17% 17%

Boyle, Tan and Tian40



The results in Table 2 also indicate that as the size of the period becomes smaller, the convergence of
the BDT model becomes more sensitive. For example, a small perturbation of the n-period yield volatility,
say to 19.9%, would lead to no positive short rates for Example (c) with t = 1

52 while the result is
inconclusive for both (b) and (c) with larger time steps.

We now consider the rest of the examples ((d), (e) and ( f )) in Table 1. Example (d) is similar to (c)
except that each period is of length 1

12 years so that the total time horizon in 52 periods are 4 1
3 years. In

example (e), the yield curve is downward sloping, decreasing linearly from 10% to 5% over 2 1
2 years. The

yield volatility is also downward sloping which decreases linearly from 20% to 17% over the same time
horizon. The input term structures for example ( f ) also exhibits the same shape as (e) except that the
curves are spread over a much shorter horizon; i.e. 5

6 years. We will use a 10-period BDT lattice to � t the
term structures given in examples (e) and ( f ).

It is found that even with a much longer time horizon (compared to (c)), there is no problem in
calibrating the term structure in (d). On the other hand, the calibration fails in the tenth period for the
decreasing term structures in (e) and ( f ). This issue can again be addressed using Theorem 3. The last
three columns in Table 2 summarize the results. Theorem 3 indicates that if the 10-period yield volatility
in cases (e) and ( f ) is less than 17.14% and 17.22%, respectively, then there exists no positive short rates
in this period. The input term structure, which is ^Y(10) = 17%, clearly falls within the range and hence
accounts for the break-down of the BDT in the tenth period.

An alternative characterization of Theorem 3 is to examine the ‘regions of no solution’. The conditions
in Theorem 3 jointly provide the bounds on Ŷ (n), and ^Y (n) for which the BDT model cannot be
calibrated. Figure 1 depicts the regions of interest for Example (e). The shaded region is derived from
condition (i) while the striped region from condition (ii). Hence any input data (Ŷ (n), ^Y (n)) which lie in
these zones makes the calibration infeasible. This also explains the phenomenon observed in Example (e)
where the input data lies within the failure zone (marked with an X on the � gure).

It should be pointed out that in all the examples we have considered, the forward rates are positive.
If the n-period yield volatility satis� es the bounds in Table 2, then positive short rates do not exist.
This indicates that the implied short rate volatility is either negative or in� nite, a consequence of
Theorem 2.1 of Sandmann and Sondermann (1993) (or see Section 2). For instance, in Example (b)
with Ŷ (12) = 4% and ^Y (12) = 20%, the implied short rate volatility turns out to be 36.65%.
Theorem 2.1 of Sandmann and Sondermann ensures that the BDT model can be calibrated since the
forward rates are positive and the short rate volatility is positive and � nite. Now if one changes
the magnitude of ^Y (12) so that it approaches the bounds in Table 2, the implied short rate volatility
must necessarily be approaching zero or in� nity. This is illustrated in Table 3 which gives the implied
short rate volatility in the last period by � tting to ^Y (12) = 19.994%, 19.995%, 20.005% and 20.006%

Table 2. The implied ranges on ^Y (N ) from Theorem 3 for examples in Table 1.

Example (a) (b) (c) (d ) (e) ( f )

N 4 12 52 52 10 10
(i): ^Y (N) > 20.568% 20.057% 20.005% 20.011% 17.481% 17.425%
(ii): ^Y (N) < n/a n/a n/a n/a n/a n/a
(ii): ^Y (N) < 19.238% 19.930% 19.994% 19.999% 17.135% 17.224%
(i): ^Y (N) > n/a n/a n/a n/a n/a n/a
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while maintaining Ŷ (12) = 4%. In these cases, even with a small perturbation of the yield volatility, the
implied short rate volatility changes dramatically. More importantly, when the yield volatility is
approaching the bound given by condition (i), the implied short rate volatility gets larger. On the other
hand, when the yield volatility is approaching the bound by condition (ii), the implied short rate volatility
gets smaller.

6. Conclusion

We already know that all one-factor models such as the BDT model have limitations in modelling
yield curve behaviour. Litterman and Scheinkman (1991) � nd that three factors are required to provide
an adequate representation of yield curve dynamics. Hull and White (1995) have noted that if we over� t
a one-factor Markovian model, we end up with unrealistic dynamics for the future evolution of
volatility. Indeed they suggest that one should only � t the initial term structure of bond prices and

Table 3. The implied short rate volatility in Example (b) for different input ^Y (n).

n-period implied short
^Y (12) (%) rate volatility (%)

19.994 3.554
19.995 9.050
20.005 64.712
20.006 70.414

Fig. 1. Regions of no solution for Example (e).
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not overparametrize the model. Radhakrishnan (1998) points out that the BDT model generates
pricing errors irrespective of whether the model is � tted to the yield volatilities or the short rate
volatilities. By using the HJM model as a benchmark, he � nds that if the yield volatility is used to
calibrate the corresponding BDT model, the BDT model underprices options with long maturities.
Conversely, he � nds that if the short rate volatility is used, the BDT model overprices options on long
term bonds.

This paper has pointed out some additional technical problems that may arise when � tting a
BDT lattice to an input set of yields and term structure of yield volatilities. The situation is
more complicated when we � t the yield volatility rather than the short rate volatility. We � nd explicit
mathematical conditions which indicate when it is feasible to � t a BDT model. In this case they
involve joint restrictions on both the input bond prices and the yield volatilities. When we use the yield
volatilities as input, the resulting mathematical conditions to ensure a feasible calibration are quite
complicated. If we use the short rate volatilities as the input, then both the economic intuition and the
mathematical restrictions are much simpler. Analysis con� rms that the conventional practice of � tting the
model to the short rate volatilities rather than the yield volatilities has theoretical as well as practical
advantages.
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Appendix A: Quanti� er elimination

We brie� y review the main theorem of Quanti� er Elimination (QE) in this appendix.

Theorem 4 (QE Theorem) Let A = <[t1, . . ., tr], B = A[x1, . . ., xn] where the t’s and x’s are indeterminates
and < is the real number � eld. Let

G ˆ fF1, . . . , Fm, Gg B

Then we can determine in a � nite number of steps (and in a constructive way) a � nite collection
{G1, . . ., Gs} where

Gj ˆ f fj, 1, . . . , Fj,mj, gjg A

such that for any (c1, . . ., cr) 2 <(r) the system of equations and equation G(c1, . . ., cr):

F1(c1, . . . , cr; x1, . . . , xn) ˆ 0

..

.

Fm(c1, . . . , cr; x1, . . . , xn) ˆ 0

G(c1, . . . , cr; x1, . . . , xn) 6ˆ 0

is solvable for the xs in R if and only if the ci satisfy one of the systems Gj(c1, . . ., cr):

fj, 1(c1, . . . , cr) ˆ 0

..

.

fj,mj (c1, , cr) ˆ 0

gj(c1, . . . , cr) 6ˆ 0

for every 1 j s. There are no variables x1, . . ., xn in the functions fj, k, gj, K 1 j s, K 1 k mj.
This elimination process was � rst given by Tarski (1951), and the techniques traced back to the work

of Sturm, Euler and Bezout in the 18th century. Tarski’s original method was not practical and was
substantially modi� ed and improved by Collins (1975). Collins’s algorithm has been implemented in a
computer algebra system by Arnon (1981). Even in the three-step case, this ef� cient algorithm is so
complicated that it is impossible to give the criterion explicitly by the analysis of the computing time
given in Collins’s original paper. Nevertheless, we can still provide criteria to check whether there exists
reasonable interest rates in the BDT model as discussed in Section 4.
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Appendix B: Proof of Theorem 1

First we need the following lemma:

Lemma 5 If

r(2, 0), r(2, 1), r(2, 2) 2 (0, !) (39)

then

u2 2 (max‰L1, L2Š, min‰M1, M2Š) (40)

where

L1 ˆ 1
(1 ‡ ! t)‰1 ‡ r(1, 1) tŠ

L2 ˆ 2 a 3

a 1
¡ 1

1 ‡ r(1, 0) t

M1 ˆ 1
1 ‡ r(1, 1) t

M2 ˆ 2 a 3

a 1
¡ 1

‰1 ‡ r(1, 0) tŠ(1 ‡ ! t)

Proof. De� ne r0 = (1 + r(2, 0) t)¡1, r1 = (1 + r(2, 1) t)¡1, r2 = (1 + r(2, 2) t)¡1. It follows from (39)
that

r0, r1, r2 2 1
1 ‡ ! t

, 1

By de� nition, the variable u2 and v2 can be expressed as

u2 ˆ 1
2‰1 ‡ r(1, 1) tŠ (r1 ‡ r2) (41)

v2 ˆ 1
2‰1 ‡ r(1, 0) tŠ (r0 ‡ r1) (42)

Substituting (42) into (10) and rearranging, we obtain

u2 ˆ 1
2

4 a 3

a 1
¡ r0 ‡ r1

1 ‡ r(1, 0) t
(43)

Since

r0 ‡ r1, r1 ‡ r2 2 2
1 ‡ ! t

, 2

Equations 41 and 43 imply that the bounds on u2 are (L1, M1) and (L2, M2), respectively. This completes
the proof to the lemma.
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To prove Theorem 1. First note that the root of g1 solves (6) and (10). Furthermore, the positivity of the
short rates implies that we are only interested in the positive root of g1. It follows from the above lemma
that condition (39) implies that 0 < u < (!).

Suppose g1( (!)) 0, we need to prove g1 (x) has no root in (0, (!)). Let ej denote the coef� cient of xj

in (17). We have g1(0) = ¡e0 < 0 and g0
1(0) = ¡e1 < 0. This implies that we only need to examine the

behaviour of g1 (x) in (0, (!)). We argue that the function g1 is either decreasing from x = 0 and then
increasing until x = (!), or is decreasing in the entire range. This is equivalent to saying that g0

1 (x) = 0 has
at most one root in (0, (!))

Suppose is the root of g0
1 (x) = 0 in the interval (0, (!)), and let , be other roots of this equation.7

Then we have

a ‡ b ‡ ˆ ¡ 3e3

4

a b ‡ a ‡ b ˆ e2

2
a b ˆ e1

If one of , is not a real number, so is the other. In this case the proof is complete. Suppose both ,
are real numbers. From the last equation we have > 0. Therefore, either > 0, > 0 or < 0, < 0.
However, + = ¡3e1/4 ¡ < 0, which leads to < 0, < 0. Hence, g0

1 (x) has at most one root in the
interval (0, (!)). This completes the proof of Theorem 1.

Appendix C: Sturm’s Theorem

In this appendix, we summarize the key result of Sturm’s Theorem which is taken from Jacobson (1985).
If c = {c1, c2, . . ., cm } is a � nite sequence of non-zero elements of <, then we de� ne the number of
variations in sign of c to be the number of i, 1 i m ¡ 1, such that cici + 1 < 0. On the other hand, if c is
an arbitrary sequence of elements in <, then the number of variations in sign of c is de� ned to be the
number of variations in the sign of the subsequence c0 obtained by dropping the 0s in c.

Now let f (x) be any polynomial in <[x] of positive degree. We de� ne the standard sequence for f (x) as

f0(x) ˆ f (x)

f1(x) ˆ f 0(x) (formal derivativeof f (x))

f0(x) ˆ q1(x) f1(x) ¡ f2(x), deg f2 < deg f1

..

. ..
.

(44)

fi¡1(x) ˆ qi(x) fi(x) ¡ fi‡1(x), deg fi‡1 < deg fi

..

. ..
.

fs¡1(x) ˆ qs(x)fs(x) i:e: fs‡1(x) ˆ 0

7 Note that , may be complex numbers.
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Thus, the fi(x) are obtained by modifying the Euclid algorithm for � nding the g.c.d. of f (x) and f 0(x) in
such a way that the last polynomial obtained at each stage is the negative of the remainder in the division
process.

We now state Sturm’s Theorem.

Theorem 6 (Sturm’s Theorem) Let f (x) be a polynomial of positive degree with coef� cients in the
real number � eld < and let { f0(x) = f (x), f1(x) = f 0(x), . . ., fs(x)} be the standard sequence (44)
for f (x). Assume [a, b] is an interval such that f (a) 6ˆ 0, f (b) 6ˆ 0. Then the number of distinct roots
of f (x) in (a, b) is Va ¡ Vb where Vc denotes the number of variations in sign of { f0(c), f1(c), . . .,
fs(c)}.

Remark: The Newton–Raphson algorithm is a commonly used technique for � nding the zeros of the
polynomials. There are many other ef� cient algorithms for approximating polynomial zeros as well. See
the recent survey paper by Pan (1997).

Appendix D: Proof of Theorem 3

Proof. Substituting (6) into (10) and eliminating u, we obtain

n ‡ 1 ¡ n‡1 ‡ n‡1 ¡n
¡ 2

a n‡1

a 1
ˆ 0 (45)

or equivalently,

1 ¡ 2
a n‡1

a 1
¡ n

¡1
n ¡ 1 ˆ n‡1 (46)

Replacing v by the variable x and n + 1 by the variable y, and let f (x, y) and (x) to be the expression on
the left-hand side of (45) and (46) respectively; i.e.

f (x, y) ˆ x n ‡ 1 ¡ y ‡
y
x

¡n
¡ 2

a n‡1

a 1
(47)

(x) ˆ x
1 ¡ x

2
a n‡1

a 1
¡ xn

¡1
n ¡ 1 (48)

By construction, we have f (x, (x)) = 0, for x > 0.
Let ˆ ( n‡1= 1)1=n and a ˆ ‰Pd(n)Š1=n. Then ( ) = 1 and (x) > 1 for x 2 ( , 1), (x) < 1 for

x 2 (0, ).
In (i), note that f (a, (a)) = 0 and a 2 (0, 1). Moreover f is strictly increasing as a function of x for any

� xed y > 0. Hence f (x, (a)) < 0, 8x 2 (0, a). On the other hand, f (x, y) is strictly decreasing as a function
of y for any � xed 0 < x < 1. This implies that f (x, ) < 0, 8 > (a), x 2 (0, a).

By de� nition, v can be written as

n ˆ Pd(n)
Xn

iˆ0

Ad(n, i)
Pd(n)

1

1 ‡ r(n, 0)b i
n t
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Since all the short rates up to time period n are assumed to be positive, it follows from the convex property
that v 2 (0, a). Hence there exist no positive interest rates in (n + 1)th period when the yield volatility ^y

(n + 1) satis� es that = exp[2^y(n + 1)
������

t
p

)] > (a). Thus (i) is proved.
To prove part (ii), we consider the equation in terms of u and assume that < 1 (by symmetry). Let b =

[Pu(n)]1/n 2 (0, 1). Then the proof is similar for

ˆ exp‰¡ 2^y(n ‡ 1)
������

t
p

Š > (b)

which is equivalent to

^y(n ‡ 1) <
1

2 t
log

1
(b)
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