
ECON 6202: Advanced Microeconomic Theory
Instructor: Dmitry Shapiro 1

1 Utility and Preferences

1.1 Preferences

There are four elements of models of consumer choice. The �rst one is a choice set X;which is anything we

could possibly like to consume. We will assume that 1)X 6= ?; 2)X � Rn+ Examples of choice set X are

given on the pictures below.

The second element of consumer choice is a feasible set B; which is a set of all consumption plans that

are feasible given the circumstances (e.g. income and prices). We assume that B � X. The third element
is a preference relation which re�ects consumer�s tastes for di¤erent objects of choices. The last one is

"behavioral assumption", which means that consumer wants to �nd the best available alternative given his

taste.

Consider the following, binary relation on X that we denote as " < ":Whenever we write x < y it means
that "x is at least as good as y" or "x is weakly preferred to y". There are �ve axioms of the binary relation.

Axiom 1 (A1) Completeness: 8x; y 2 X; either x < y or y < x (or both)

Axiom 2 (A2) Transitivity: 8x; y 2 X; x < y and y < z ) x < z

De�nition 1.1 Binary relation < that satis�es A1 and A2 is called preference relation.

Based on < we can introduce two other binary relations:

� x � y or "x is strictly preferred to y". We say that x � y i¤ x < y and y 6< x;

� x s y or "x is indi¤erent to y": We say that x s y i¤ x < y and y < x:

Both � and s are transitive relations but not complete. For � completeness requires that either x � y
or y � x, but if x s y, that doesn�t hold. For s completeness would mean that either x s y or y s x, which
is not true when x � y.
Let us introduce a couple of notations as follows:

� < (x0) = fx j x 2 X;x < x0g is called at least as good set;

� 4 (x0) = fx j x 2 X;x 4 x0g is called no better than set;
1These notes are preliminary, full of typos and in general are incorrect. Do not read or use!
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� � (x0) is called strictly better set ;

� � (x0) is called strictly worse set;

� s (x0) is called indi¤erent set.

Axiom 3 (A3) Continuity: 8x 2 Rn+ sets < (x) and x 4 (x) are closed sets in Rn+.

What is a closed set? See JR, Section A.1.3, p.417. When Axiom (A3) says that the set < (x) is closed
it means the following. Take a sequence of bundles y1; : : : ; yn; : : : . If 8n yn < x and yn ! y then y < x.

Example 1.2 An example of non-continuous preferences is lexicographic preference on X = R2+: (x1; x2) �
(y1; y2) if either x1 > y1or x1 = y1; x2 > y2.We de�ne lexicographic preferences so that x < y if x1 > y1 or

worse better

better

x1

x2

0

x0

if x1 = y1 and x2 > y2: The picture above shows that < (x0) is not closed.

Axiom 4 (A4) Strict Monotonicity : 8x; y 2 Rn+; if x > y ) x < y; if x� y ) x � y:

x

Strictly
better

Axiom 5 (A5) Strict convexity: i¤ x 6= y and x < y then tx+ (1� t)y � y 8t 2 (0; 1):

Essentially the strict convexity axiom states that "the better set is convex", which can be related to

diminishing MRS.

1.2 Utility function

De�nition 1.3 A real-valued function u : Rn+ ! R is called a utility function representing < if 8x; y 2
Rn+ : u(x) > u(y), x < y:
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Theorem 1.4 If preference relation < satis�es (A1)�(A4), then there exists a continuous u : Rn+ ! R which
represents < :

Proof. We will explicitly construct the utility function that represents <. Let e = (1; 1:::1) and de�ne

u : Rn+ ! R, so that u(x)e s x:

x

U(x)e

e
Indifference curve

This construction raises two questions: whether there exist such u(x) and is it unique? The answer is

yes to both. To prove the former, take t to be very small, then te � x(why?); take t to be very large, then
te � x (why?); then by continuity, 9t�; t�e s x. As for the uniqueness, assume it does not hold. Then there
exist two numbers t1 and t2 such that t1e s x and t2e s x. Then t1e s t2e which implies t1 = t2. To see
the last application assume that t1 > t2. Then by strict monotonicity t1e > t2e, which is a contradiction.

The last thing to establish is that u represents <. In order to do this we need to show: u(x) > u(y) ,
x < y. which is true because

x < y , u(x)e s x < y s u(y)e , u(x)e < u(y)e , u(x) � u(y)

This completes the proof of the theorem.

Question: Is the utility function that represents a particular < unique? The answer is no, v(x) = u(x)+5
would represent the same preferences as u. Furthermore, take any monotone increasing function g : R! R.
Then g(u(x)) is another utility function that represents <. Indeed,

x < y , u(x) � u(y) , g(u(x)) � g(u(y)):

1.3 Indi¤erent curves and MRS

De�nition 1.5 Indi¤erent curve is a set: fx 2 R+n : u(x) = �ug

When n = 2 an indi¤erent curve is a set IC = f(x1;x2) : u(x1;x2) = �ug. Usually there are in�nitely
many IC: one for each �u.

De�nition 1.6 MRS12(x; y)� marginal rate of substitution� is the rate at which the customer is willing to
give up x2 in exchange for x1; so that he remains indi¤erent. More formally, MRS12(x; y) is the absolute

value of the slope of the indi¤erent curve at (x; y).

In the case of two goods as x1 varies, x2 varies as well in order to keep u constant. Thus we can de�ne a

function x2 = f(x1) such that u(x1; f(x1)) = �u. By De�nition above, MRS12(x1; x2) is the absolute value

of function f 0.

In what follows another representation of the MRS will be also useful. By De�nition the MRS is

MRS12(x1;x2) =j f 0(x1) j= �f 0(x1);
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where function f is de�ned as

�u = u(x1;x2) = u(x1; f(x1)):

Taking its derivative with respect to x1 we get

0 =
@u(x1; f(x1))

@x1
+
@u(x1; f(x1))

@x2
� @f
@x1

which implies

MRS12(x1; x2) = �
@f

@x1
=
@u=@x1
@u=@x2

=
MU1
MU2

:

We�ve already seen that the same preferences can be represented by many di¤erent utility function.

However, MRS does not depend on a particular choice of u. In other words the MRS of u and MRS of

g(u) are the same, where g is an increasing monotone function. Indeed, let

û(x; y) = g(u(x; y));

where g : R2+ ! R and g0 > 0. Then

\MRS12(x1; x2) =
@û=@x1
@û=@x2

=
g0(u(x1; x2)) � @u=@x1
g0(u(x1; x2)) � @u=@x2

=
@u=@x1
@u=@x2

=MRS12(x1; x2)

Another observation is that indi¤erence curves do not depend on representation of u either. That is that

f(x1; x2) : u(x1; x2) = �ug = f(x1; x2) : g(u(x1; x2)) = g(�u)g:

These two sets are the same, because g is monotone.

Example 1.7 Cobb-Doublas utility function u(x; y) = x�y� � > 0; � > 0

MU1 =
@(x�y�)

@x
= y� � @x

�

@x
= y��x��1;

MU2 =
@(x�y�)

@y
= �y��1x�;

MRS12(x; y) =
MU1
MU2

=
y��x��1

�y��1x�
=
�y

�x
:

Example 1.8 Perfect substitutes: u(x1; x2) = �x1 + �x2; like Coke and Pepsi.

�u = u(x1; x2) = �x1 + �x2 ) x2 =
�u

�
� �
�
� x1

slope = ��
�
; MRS =

�

�
; MU1=MU2 =

�

�

x

y

Example 1.9 Perfect complements: u(x1; x2) = minf�x1; �x2g; like left shoe and right shoe. Another

example, x1� car, x2� wheels so that u(x1; x2) = minf4x1; x2g. For these preferences MRS = 0 or 1.
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2 Consumer�s problem

2.1 Marshallian Demand

We de�ne the consumer�s problem as follows:

� Consumption set is X = Rn+; An element of the consumption set is an n-dimensional vector x =

(x1; x2:::xn), where xi is the consumption of good i under xi.

� Budget set B: for each of n goods there are prices p = (p1; p2; :::; pn) and 8i; pi > 0. Consumer�s

income is y > 0. Then budget set is the set of all consumpition plans that are a¤ordable given price

vector, p, and income, y. Formally, B = fx 2 Rn+ p1x1+ p2x2:::+ pnxn 6 yg: For example, when n = 2

B =

(
p1x1 + p2x2 6 y
x1 > 0; x2 > 0

� Consumer�s problem is to choose x 2 Rn+ that maximizes the following problem:8><>:
max
x
u(x1; x2:::xn)

p1x1 + p2x2:::+ pnxn 6 y
xi > 0 8i

(1)

x

y

y/p2

y/p1

p1x1 + p2x2 = y

B is non-empty, closed and bounded and, therefore, B is compact which means that the solution to the

maximum problem exists. The maximization problem is equivalent to the problem of getting the bundle on

the highest IC which satis�es budget constraints. Note: if < are monotone then budget constraint holds

with equality.

Example 2.1 Cobb-Douglas u(x1; x2) = x�1x
1��
2 0 < � < 1
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x

y

maxL(x1; x2; �) = x
�
1x

1��
2 + �(y � p1x1 � p2x2)

@L

@x1
= �x��11 x1��2 + �(�p1) = 0

@L

@x2
= (1� �)x�1x��2 + �(�p2) = 0
@L

@�
= y � p1x1 � p2x2 = 0

) x1 =
�y

p1
; x2 =

y

p2
(1� �)

) � =
1

p2
(1� �)

�
�y

p1

���
y

p2
(1� �)

���
=

p��12 ��

(1� �)��1p�1

To see how this technique works for a more general utility functions consider the case of n = 2; we use

Lagrange Multiplier and FOC to sloe this problem.8><>:
maxu(x1; x2)

p1x1 + p2x2 6 y
xi > 0 8i = 1; 2

maxL(x1; x2; �) = u(x1; x2) + �(y � p1x1 � p2x2)
@L

@x1
=
@u(x1; x2)

@x1
� �p1 = 0)

@u(x1; x2)

@x1
= �p1

@L

@x2
=
@u(x1; x2)

@x2
� �p2 = 0)

@u(x1; x2)

@x2
= �p2

@L

@�
= y � p1x1 � p2x2 = 0

)MRS =
@u=@x1
@u=@x2

=
p1
p2

In general case, we solve consumer�s problem as follows:8><>:
maxu(x1; x2:::xn)

p1x1 + p2x2:::+ pnxn 6 y
xi > 0 8i
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maxL(x1; x2:::xn; �) = u(x1; x2::xn) + �(y � p1x1 � p2x2 � pnxn)

FOC :
@L

@x1
= @u

@x1
� �p1 = 0) @u

@xi
= �pi

@L

@xn
= @u

@xn
� �pn = 0) @u

@xj
= �pj

@L

@�
= ��pixi + y = 0

)MRSij =
@u=@xi
@u=@xj

= pi
pj

However, Lagrange Multiplier doesn�t work in some cases.

Example 2.2

max 3x1 + 4x2 st:6x1 + 9x2 = 36

L = 3x1 + 4x2 + �(36� 6x1 � 9x2)
@L

@x1
= 3� 6� = 0) � = 1

2

@L

@x2
= 4� 9� = 0) � = 4

9

It has no solution, so maximum will be achieved at the corner: (6,0).

x1

x2

4

6

6x1 + 9x2 = 36

De�nition 2.3 The solution to the consumer�s maximization problem (1), x(p; y), is called Marshllian de-

mand function. It is a function that determines the optimal bundle given p and y.

In example 2.1, x1(p1; p2; y) =
�y

p1
; x2(p1; p2; y) =

y

p2
(1� �). In particular, we can see that x(kp; ky) =

x(p; y). In fact this holds more generally. This is because the consumer�s maximization problem given (p; y)

is identical to the consumer�s maximization problem given (kp; ky):(
maxu(x)

kp1x1 + kp2x2:::+ kpnxn 6 ky
()

(
maxu(x)

p1x1 + p2x2:::+ pnxn 6 y

De�nition 2.4 Rn ! R is a homogeneous function of degree � if

f(kx1; kx2:::kxn) = f(kx) = k
�f(x) = k�f(x1; x2:::xn)

Since for the Marshallian demand function x(kp; ky) = k0x(p; y) = x(p; y), it is homogenous of degree 0.
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2.2 Indirect utility and expenditure functions

The utility function u(x) is de�ned directly over the consumption set X, so it is usually called a direct utility

function. However, we can ask the following question: what is the highest utility level that can be achieved

given (p; y)? To answer this question we can construct a utility function which is a function of p and y:

v(p; y) = u(x(p; y)). It is called indirect utility function, and it depends only on p and y, and not on the

consumption bundle x.

Example 2.5 From example 2.1 we know that for the Cobb-Douglas utility function the Marshallian demand
is

x(p; y) =

�
�y

p1
;
(1� �)y
p2

�
:

Plugging it back into the utility function we get

u(x) = x�1x
1��
2 =

�
�y

p1

���
(1� �)y
p2

�1��
= v(p; y)

Properties of v(p; y):
1. v is homogeneous function of degree 0. This is because v(kp; ky) = u(x(kp; ky)) = u(x(p; y)) = v(p; y).

2. v(p; y) is increasing with respect to y.

3. v(p; y) is decreasing with respect to pi.

4. Roy�s Identity:

xi(p; y) = �
@v(p; y)=@pi
@v(p; y)=@y

;

Roy�s Identity is very useful, for example, in evaluating the e¤ects of price changes. From RI it follows

that

@v

@pi
= �@v

@y
� xi(p; y);

@v

@pj
= �@v

@y
� xj(p; y):

Since we observe xi and xj we can evaluate whether it is better to subsidize industry i or industry j (for

example in both industries prices are about to increase and the government has enough to money to subsidize

only one industry from price increase).

To prove the RI, we will use envelope theorem:

Theorem 2.6 (Envelope Theorem) Assume x�(a) solves maxx f(x; a), where a is a parameter like price.
De�ne g(a) as g(a) = f(x�(a); a); then

dg(a)

da
=
@f(x�(a); a)

@a

Proof. The proof is simple:

dg(a)

da
=
@f(x�(a); a)

@x
� @x
@a
+
@f(x�(a); a)

@a
=
@f(x�(a); a)

@a
;

where the last equality holds because x�(a) is the solution to the maximization problem and so
@f(x�(a); a)

@x
=

0:
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Example 2.7 Let f(x; a) = ax� x2.

@f(x;a)
@x = a� 2x = 0) x� =

a

2

g(a) = f(x�(a); a) =
a2

2
� a

2

4
=
a2

2
dg(a)

da
=
a

2

This was one way to �nd dg=da but it is long. Using the envelope theorem, we can immediately get
dg(a)

da
=
@f(x�(a); a)

@a
= x�(a) =

a

2
. That is, �rst, we take derivative of f(x) = ax � x2 with respect to a,

treating x as a constant so that
@f(x)

@a
= x;. Then we plug in optimal x�(a), which is equal to

a

2
:

Now use envelope theorem to prove RI. By de�nition

v(p; y) = max
x;�

(u(x) + �(y � p1x1 � :::� pnxn))

@v(p; y)

@pi
= ��xi;

@v(p; y)

@y
= �

) xi(p; y) = �@v(p; y)=@pi
@v(p; y)=@y

Another way of looking at consumer�s maximization problem is to ask given p and �u; how much money

is needed to achieve this level of �u ? To �nd out we need to solve the problem(
minx p1x1 + p2x2:::+ pnxn

st:u(x) = �u

The Lagrangian and the First-Order Conditions are

minx;��pixi + �(�u� u(x1; x2:::xn))
@L

@xi
= pi � �

u(x1; x2:::xn)

@xi
= 0

@L

@�
= �u� u(x1; x2:::xn) = 0

From the FOC it follows that

pi
pj
=
@u(x)=@xi
@u(x)=@xj

=
MUi
MUj

=MRSij

Denote as h(p; �u) the solution to the above problem. It is called Hicksian demand function. e(p; �u) =

�pi� h(p; �u) is cost of the bundle h(p; �u):

Example 2.8 For the Cobb-Douglas utility function the minimization problem is(
minx p1x1 + p2x2

st:x�1 x
1��
2 = �u

The FOC are
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@L

@x1
= p1 � ��x��11 x1��2 = 0

@L

@x2
= p2 � �(1� �)x�1 x��2 = 0

@L

@�
= �u� x�1x1��2 = 0

Solving it we get

h1 = �u

�
�

1� �
p2
p1

�1��
;

h2 = �u

�
1� �
�

p1
p2

��
e(p; �u) = p1�u

�
�

1� �
p2
p1

�1��
+ p2�u

�
1� �
�

p1
p2

��
= �up�1 p

1��
2

 �
�

1� �

�1��
+

�
1� �
�

��!
Going back to the minimization problem. Intuitively, what we do is we �x IC and �nd the lowest budget

line tangent to IC.

A

B

B
uÝx1, x2Þ = u#

Properties of e and h functions:
1. h(kp; �u) = h(p; �u); homogeneous of degree 0 with respect to price.

2. e(kp; �u) = ke(p; �u); homogeneous of degree 1 with respect to price.

3. When �u increases) e(p; �u) increases too.

4. When pi increases) e(p; �u) increases too.

5. Shephard Lemma
@e(p; �u)

@pi
= hi(p; �u) > 0. The proof is by envelope theorem

e(p; �u) = minx;��pixi + �(�u� u(x))
@e(p; �u)

@pi
= hi(p; �u) by envelope theorem

6. e(p; �u) is concave with respect to the price vector.

Proof. We need to show that e(�p1 + (1� �)p2; �u) > �e(p1; �u) + (1� �)e(p2; �u). From the de�nition of e

e(p�; �u) = p� � h�(p�; �u)
= �p1 � h�(p�; �u) + (1� �)p2 � h�(p�; �u)
> �p1 � h�(p1; �u) + (1� �)p2 � h�(p2; �u)

= �e(p1; �u) + (1� �)e(p2; �u)
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When e is di¤erentiable,
@2e(p; �u)

@p2i
6 0 ) @

@pi

�
@e(p; �u)

@pi

�
6 0 ) @hi(p; �u)

@pi
6 0; so Hicksian demand is

always decreasing in its own price.

Given the de�nitions of x; h; v and e it is easy observe that the following equalities hold:8>>><>>>:
v(p; e(p; �u)) = �u

e(p; e(p; �u)) = y

x(p; e(p; �u)) = h(p; �u)

h(p; v(p; y)) = x(p; y)

(2)

The formal proof is given in JR p.40 and p.43. Intuitively, let us look at the �rst equality. Clearly,

v(p; e(p; �u)) � �u. Indeed by de�nition of e given p and y(= e(p; �u)) we can achieve at least �u. Since v is the
maximum utility that can be achieved give p and y we have that v(p; y) � �u. Assume now that v(p; y) > �u.
Then v(p; y � ") > �u by continuity of v. Consequently e(p; �u) � y � " which is a contradiction.

2.3 Compensating and Equivalent Variations.

Among the four functions that we consider, that is x(p; y); v(p; y); h(p; u) and e(p; u) the only one that is

observed directly is Marshallian demand. From x(p; u) we can derive the expenditure function which as a

solution to the ordinary di¤erential equation

de(p1;p; u
0)

dp1
= x1(p1; e(p1;p; u

0)):

Having an expenditure function we can analyze how consumer�s well-being changes as a result of changes in

price. Most importantly, the comparison can be made in terms of money.

Let�s say the price vector changes from p0 to p1. The utility under old prices was u0 and under new

prices it is u1. How does the price change a¤ect the consumer? How much money should the government

pay to the consumer to compensate him for price change? This amount is called Compensating Variation

(CV) and is de�ned as

CV (p0; p1; w) = e(p1; u1)� e(p1; u0) = w � e(p1; u0) =
Z p0

p1
hi(p; p�i; u

0)dp

Another way to measure the impact of price in monetary terms is to ask how much money would have to

be taken away from the consumer before the price change to leave him as well o¤ as he would be after the

price change. This is called the Equivalent Variation (EV) in income since it is the income change that is

equivalent to the price change in terms of the change in utility. Formally, it is de�ned as

EV (p0; p1; w) = e(p0; u1)� e(p0; u0) = e(p0; u1)� w =
Z p0

p1
hi(p; p�i; u

1)dp

The CV and EV can be compensated graphically:

Consider a simple example. Assume that a consumer has a utility function u(x1; x2) =
p
x1x2. We know

the demand for a Cobb-Douglas function is (
y

2p1
;
y

2p2
). If original prices are (1; 1) and income is 100 then

the optimal bundle then is (50; 50). What should be a consumer�s income, y1 to keep the same utility as

before when the prices change to (2; 1)? Given the new prices consumer�s demand is (
y1
4
;
y1
2
) and the new

utility is u1 =
y1

2
p
2
. The old utility was 50. Therefore y1 = 100

p
2 � 141. Hence, the consumer would need

about $41 of additional money after the price change.
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To calculate the EV we need to ask how much money would be necessary at (1; 1) to make the consumer

as well of as he would be consuming (25; 50), or�y1
2

�1=2 �y1
2

�1=2
= 251=2501=2:

Solving for y1 we get y1 = 50
p
2 � 70. Thus if the consumer had an income of $70 at the original prices,

he would be just as well of as he would be facing the new prices and having an income of $100. The EV is

100� 70 = 30.
Note that CV and EV are not equal. That is, in general the amount of money that the consumer would

be willing to pay to avoid a price change would be di¤erent from the amount of money that the consumer

would have to be paid to compensate him for a price change. This is not surprising. After all, at di¤erent

sets of prices a dollar is worth a di¤erent amount to a consumer since it will purchase di¤erent amount of

consumption.

2.4 Properties of x. Substitution and Income E¤ect.

De�nition 2.9 If
@xi(p; y)

@y
> 0, then i is called normal good; if

@xi(p; y)

@y
< 0, then i is called inferior good.

x1

x2

x1’x1’’

For example, x1 could be a dinner in McDonalds, x2 a dinner in fancy restaurant here.

As pi increases, there are three possibilities for xi: to increase, to decrease and to remain the same. All

three possibilities are shown on the pictures below.
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x1

x2

x1’’x1’ x1

x2

x1’x1’’ x1

x2

x1’=x1’’

To see the e¤ect of4pi on xi, decompose it into two e¤ects: substitution e¤ect (SE) and income e¤ect(IE).
On the picture below xB � xA is SE, xC � xB is income e¤ect, and xC � xA is total e¤ect.

x1

x2

XaXc Xb

A
B

C

More formally, �x p and y and let �u = v(p; y). As we�ve established above

hi(p; �u) = xi(p; e(p; �u)):

Di¤erentiating it with respect to pi we get

@hi(p; �u)

@pi
=
@xi(p; e(p; �u))

@pi
+
@xi(p; e(p; �u))

@y
� @e(p; �u)

@pi
(3)

From Shephard Lemma and (2) we have that

@e(p; �u)

@pi
= hi(p; �u) = hi(p; v(p; y)) = xi(p; y) and e(p; �u) = e(p; v(p; y)) = y

Thus we can re-write (3) as
@hi(p; �u)

@pi
=
@xi(p; y)

@pi
+
@xi(p; y)

@y
� xi(p; y);

where each term represents corresponding total, substitution and income e¤ects

@xi(p; y)

@pi| {z }
TE

=
@hi(p; �u)

@pi| {z }
SE

� @xi(p; y)
@y

� xi(p; y)| {z }
IE

:

This equality above is called Slutsky Equation. Using it we can analyze the e¤ect of price on demand.

First of all, substitution e¤ect is always negative:
@hi(p; �u)

@pi
6 0 (follows from concavity of e). As for the

income e¤ect, by de�nition 2.9, IE < 0 for normal goods and thus TE is always negative. For inferior good,

however, IE > 0 which means that TE can be positive in which case the demand for the good increases as

price increases (Gi¢ n good). This logic shows that Gi¢ n good is necessarily an inferior good.

For the derivation of Slutsky equation we took the equality hi(p; �u) = xi(p; e(p; �u)) and di¤erentiated it

with respect to pi. We can also di¤erentiate it with respect to pj in which case we get

13



@xi(p; y)

@pj
=
@hi(p; �u)

@pj
� @xi(p; y)

@y
� xi(p; y);

and using the de�nitions below we can study the e¤ect of change in pj on xi.8>>>>>>>>>><>>>>>>>>>>:

@hi(p; �u)

@pj
> 0) i and j are Hicksian substitutes

@hi(p; �u)

@pj
< 0) i and j are Hicksian complements

@xi(p; y)

@pj
> 0) i and j are gross substitutes

@xi(p; y)

@pj
< 0) i and j are gross complements

For example if good i is normal good and goods i and j are Hicksian complements then the demand for

good i always decreases when price for good j increases.

Remark 2.10 Note that
@hi
@pj

=
@hj
@pi

(why?) while as you will show in the Problem Set it is not necessarily

true for Marshallian demand, that is
@xi
@pj

6= @xj
@pi

.

Empirically it is very convenient to study properties of goods and demand using elasticities.

De�nition 2.11 Elasticity �i of demand for good i with respect to income is % change in quality demanded

per 1% change in income, that is

�i =
4xi=xi
4yi=yi

=
4xi
4y �

y

x

In limit this expression becomes

�i =
@xi(p; y)

@y
� y

xi(p; y)
:

Clearly, if
@xi(p; y)

@y
> 0 then �i > 0 and so i is a normal good. Similarly, if �i < 0 then i is an inferior

good. In a similar way we can de�ne gross-price elasticity: "ij =
@xi(p; y)

@pj
� pj
xi
and own-price elasticity:

"ii =
@xi(p; y)

@pi
� pi
xi
. Then

8>>>>>><>>>>>>:

"ii > 0) Gi¢ n good

�1 < "ii < 0) inelastic demand

"ii 6 �1) elastic demand

"ij > 0) gross substitutes

"ij < 0) gross complements

3 Revealed preferences

In Sections 1 and 2 we started with assumptions on preferences and from this we derived the observed

properties of market demand (budget balance, price e¤ects, etc.). In other words we began by assuming

something things we cannot observe � preferences � to ultimately make predictions about something we

can observe � consumer demand behavior.

14



An alternative way is to start and �nish with observable behavior. It turns out that we can make some

simple assumptions about observable choices made by consumers and from that it is possible to obtain a

theory that is equivalent to the theory developed in Sections 1 and 2.

The idea is very simple. Assume that bundles x0 and x1 are a¤ordable given p0 and assume that x0 is

chosen. Now if given p1 bundle x1 is chosen then it must be the case that x0 is no longer a¤ordable.

p1

p0x0
x1

De�nition 3.1 If a consumer buys bundles x0 instead of another a¤ordable bundle x1, then x0 is revealed
preferred to x1:

De�nition 3.2 Consumer�s choice satis�es WARP (Weak Axiom of Revealed Preference) if for any pair of

bundles x0 and x1 (x0 6= x1), such that x0 is chosen given p0 and x1 is chosen given p1 it is the case that

p0x1 6 p0x0 ) p1x0 > p1x1

In other words, if p0x1 6 p0x0, then x1 is a¤ordable given p0. If given p1 bundle x0 is not chosen then
x0 is not a¤ordable that is p1x0 > p1x1; x0.

p1

p0x0
x1

p1

p0x0

x1

p1

p0
x0

x1

The �rst and the second pictures satisfy WARP, the third one does not.

Denote as xc(p; y) the consumer�s choice function given p and y. This is NOT demand function because

we have not maximized utility. This is just a bundle chosen by the consumer given p and y. However,

Marshallian demand is an example of a choice function.

Claim 3.3 Marshallian demand xc(p; y) satis�es WARP.

Proof. For simplicity assume that < are monotone and that optimal bundle is unique.
x0 maxu given p0

x1 maxu given p1

p0x1 6 p0x0

9>=>;) u(x0) > u(x1)

Therefore, since x1 is chosen given p1; it must be that x0 is not a¤ordable.

More interesting questions is: if xc(p; y) satis�es WARP, can we �nd a utility function that would yield

xc as the outcome of utility maximization? If yes, then for all utility function that rationalizes the observed

behavior xc(p; y): The answer is yes for n = 2; but it�s not necessary for n > 2

15



De�nition 3.4 Strong Axiom of Revealed Preference(SARP): Consider x0; x1:::xk. Assume x0 is revealed

preferred to x1(p0x0 > p0x1); x1 is revealed preferred to x2, : : : , xk�1 is revealed preferred to xk. Then it

cannot be the case that xk is revealed preferred to x0(pkxk < pkx0).

A useful feature of the SARP is that it rules out intransitive revealed preferences.

Theorem 3.5 If xc satis�es SARP, then we can rationalize xc(p; y) by some utility function.

An immediate consequence of Theorem 3.5 is that a demand theory built on SARP (which puts restrictions

on observable choice) is equivalent to the theory of demand based on utility maximization.

4 Choice under uncertainty

4.1 Lotteries

To describe uncertainty we assume that there is a set of outcomes C = fC1; C2:::Cng: For example, C = {

nothing, trip to Italy, $5000}. Agent knows C and knows the probability of each outcome, but he doesn�t

know which outcome will occur.

De�nition 4.1 Lottery is a probability distribution over C. That is L = (p1; p2:::pn), where pi = p(ci), 8i
pi > 0 and �pi = 1:

For example, L = (
1

2
nothing

;
1

4
Italy

;
1

4
$5000

).

De�nition 4.2 Let L = f(p1; p2:::pn) 8i pi > 0; �pi = 1g denote the set of all lotteries. We will refer to
these lotteries as simple lotteries because they directly assign probability to each outcome.

De�nition 4.3 Compound lottery ia a lottery over lotteries. That is when with some probability you win
one lottery and with another probability you win another lottery.

Example 4.4 Let L1 = (
1

2
;
1

2
; 0) and L2 = (

1

2
; 0;

1

2
) are two simple lotteries. Then lottery L =

1

2
L1 +

1

2
L2

is a compound lottery. Given L the probability of nothing =
1

2
� 1
2
+
1

2
� 1
2
=
1

2
; probability of Italy=

1

4
;

probability of $5000=
1

4
: Thus compound lottery L is equivalent to a simple lottery (

1

2
nothing

;
1

4
Italy

;
1

4
$5000

):

Consumer only cares about the �nal outcome, so we can look at simple lotteries. Indeed, if we have k

simple lotteries: L1; L2:::Lk with Lj = (p
j
1; p

j
2:::p

j
n) then

�1L1 + �2L2 + :::+ �kLk = (�1p
1
1 + �2p

2
1 + :::+ �kp

k
1 ; :::�1p

1
n + �2p

2
n + :::+ �kp

k
n);

In other words any compound lottery is equivalent to a simple lottery.

4.2 Preferences over lotteries and expected utility

Example 4.5 Consider a person who owns the house with value $500; 000; and there is 3% probability of

hurricane to destroy the house. The person could choose between a lottery without house insurance (L1)

or with the insurance (L2). Assume that the cost of the insurance is $100,000 and that in the case of the

hurricane the insurance fully covers the cost of the house. Then
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L1 =

*
0(3%)

$500; 000(97%)
L2 =

*
500; 000� 100; 000(3%)
500; 000� 100; 000(97%)

What lottery will the consumer choose? It depends on his preferences over the lotteries which we now are

going to introduce.

Now we introduce < on L. In fact, we can use our results from Section 1 where we proved that when <
satisfy A1-A4 there exists u that represents < : In the case of lotteries, the theorem becomes

Theorem 4.6 If <on L satis�es A1�A3, then 9u : L ! R that represent <; L1 < L2 , u(L1) < u(L2):

We do not need A4 (monotonicity axiom) because is not applicable to lotteries. If L = (
1

2
;
1

2
) is a lottery

then L0 = (
1

2
+ ";

1

2
+ ") is not.

Our next goal is to show that the utility function over the lotteries can have very speci�c functional form.

This is in contrast with normal bundles where utility can be essentially anything. To show that we will use

an additional axiom.

Axiom 6 Independence axiom (IA): < satis�es IA if 8L0; L00; L; L < L0 , �L+(1��)L00 < �L0+(1��)L00:

Note: IA does not hold for "real" goods. For example, assume there are three goods: left shoes, right

shoes and dollars. Consider three bundles x1 = (0; 2; 0); x2 = (0; 0; 10) and x3 = (2; 0; 0). Then x2 < x1. By
IA it would be that

1

2
x2 +

1

2
x3 = (1; 0; 5) 4

1

2
x1 +

1

2
x3 = (1; 1; 0), which seems somewhat strange.

De�nition 4.7 Utility function u: L ! R has an expected utility form if there are n numbers v1; v2; ::vn
such that 8L = (p1; p2; ::pn)

u(L) = p1v1 + p2v2 + :::+ pnvn:

A utility function with the expected utility form is called Neuman�Morgenstern utility function. If

L = Ci ) u(L) = vi; so that vi is the utility of outcome. The utility of a lottery is the expected value of

utilities of outcomes.

Example 4.8 Let C = fH;Tg; L = (1
2
;
1

2
); u(H) = 1; u(T ) = �1. Then u(L) = 1

2
� 1 + 1

2
(�1) = 0.

If u(��jLj) = ��ju(Lj); then it is called a linear function. We can show that vNM utility function is a

linear function, that is if L1; ::Lk are simple lotteries and L = ��iLi = �1L1 + �2L2 + :::+ �kLk; then

u(L) = (��jp
j
1)| {z }

probability of c1

v1 + (��jp
j
2)| {z }

probability of c2

v2 + :::+ (��jp
j
n)vn

= ��j(p
j
1v1 + p

j
2v2 + :::+ p

j
nvn)| {z }

u(Lj)

= ��ju(Lj)

Theorem 4.9 If < on L satis�es A1�A3 and IA, then they admit utility representation of the EU form.

That is: 9v1; :::vn such that 8L;L0 :

L
(p1;p2;::pn)

< L0
(p01;p

0
2;::p

0
n)
, �pivi < �p0ivi:
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Proof. Let C = fC1; :::Cng, and without loss of generality assume that C1 < C2 < C3 < ::: < Cn. Also

note that, for example, C1 is equivalent to the lottery (1; 0; :::0).

Step 0: 8L C1 < L < Cn so that C1 can be considered as the best and Cn as the worst lotteries. Denote
them as C1 = LB Cn = LW .

Step 1: If L < L0 and � 2 [0; 1] then L < �L+ (1� �)L0 < L0. This is by IA since L = �L+ (1� �)L.
Step 2: �; � 2 [0; 1] �LB + (1� �)LW < �LB + (1� �)LW , � < �.
Indeed,

�LB + (1� �)LW = (
�� �
1� � )| {z }
�

LB + (1�
�� �
1� � )| {z }
1��

(�LB + (1� �)LW )

= �LB + (1� �)(�LB + (1� �)LW )
< �(�LB + (1� �)LW ) + (1� �)(�LB + (1� �)LW )

= �LB + (1� �)LW

Where the �rst inequality follows from LB < �LB + (1� �)LW :
Step 3: 8L 9�L 2 [0; 1] such that L � �LLB + (1� �L)LW :

The existence follows from continuity and uniqueness follows from step 2. Let f< Lg is the set of all ��s
between 0 and 1 such that L < �LB +(1��)LW . By continuity this set is closed. Similarly f4 Lg is closed
as well. At the same time by completeness f< Lg [ f4 Lg = [0; 1]. Thus there exists a common point of

both sets which is the lottery that is equivalent to L. The uniqueness follows from step 2. From step 2 in

particularly follows that if � > � then �LB + (1� �)LW � �LB + (1� �)LW
Step 4: Let u(L) def= �L. Then u(L) represents <

u(L) < u(L0), �L < �0L
, �LLB + (1� �L)LW < �0LLB + (1� �0L)LW , L < L0

Step 5: u(L) is linear. u(�L+ (1� �)L0) = �u(L) + (1� �)u(L0)
Indeed, we know that L � u(L)LB + (1� u(L))LW ; L0 � u(L0)LB + (1� u(L0))LW then,

�L+ (1� �)L0 = �[u(L)LB + (1� u(L))LW ] + (1� �)[u(L0)LB + (1� u(L0))LW ]
= [�u(L) + (1� �)u(L0)]LB + [�(1� u(L)) + (1� �)(1� u(L0))]LW

= [�u(L) + (1� �)u(L0)]LB + [1� �u(L)� (1� �)u(L0)]LW
) u(�L+ (1� �)L0) = �u(L) + (1� �)u(L0)

Example 4.10 C = (C1; C2; C3) L = (p1; p2; p3) v1 = v2 = 1; v3 = 0, then u(L) = p1+ p2 represents < and
EU. eu(L) = u2(L) = (p1 + p2)2 still represents <; but it is not in EU form.
4.3 Money and risk aversion

In this section C = R+ u(x) : R+ ! R, and we assume that u(x) increases. A lottery ex is a random variable
with outcomes x1; ::xn and probabilities p1; :::pn. Its mean payo¤ is E(ex) = �pixi. The expected utility ofex is
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U(ex) = �piu(xi) = Eu(ex)ex1 < ex2 , Eu(fx1) > Eu(ex2)
We are interested in whether an individual prefers lottery ex to certain payo¤E(ex); that is when ex < E(ex).

Using utility representation, this is equivalent to

U(ex) = Eu(ex) > u(E(ex)) = U(E(ex))
De�nition 4.11 An individual is strictly risk-averse if 8ex (with at least two outcomes) E(u(ex)) < u(E(ex));risk-
loving if E(u(ex)) > u(E(ex)); risk-neutral if E(u(ex)) = u(E(ex)):

u(x)

risk­averse

u(x2)

uÝEæxÞ
EuÝæxÞ

u(x1)

x1 x2Eæx

Claim 4.12 An individual is strictly risk-averse if and only if his utility function is strictly concave.

Sketch: a lottery with two outcomes x1; x2: By de�nition of concavity,

u(Eex) = u(p1x1 + (1� p1)x2) > p1u(x1) + (1� p1)u(x2) = Eu(ex)
We can show it for n outcomes: when u(�) is strictly concave, u(�pixi) > �piu(xi) from Jensen�s

inequality.

As we know, u(�) is strictly concave if u00(�) < 0:

Theorem 4.13 An individual is strictly risk-loving if and only if u(�) is strictly convex, that is u00(�) > 0:

u(x)

u(x2)
EuÝæxÞ
uÝEæxÞ

u(x1)
x1 x2Eæx

risk­loving

Theorem 4.14 An individual is risk-neutral if and only if u(x) = a+ bx
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Example 4.15 When u(x) = x; then

E(ex) = �pixi
u(Eex) = �pixi
Eu(ex) = �piu(xi) = �pixi

9>=>;) u(Eex) = Eu(ex) risk-neutral
4.4 Applications

4.4.1 Insurance

Claim 4.16 A RA individual will buy a full insurance for the fair price.

Proof. Let w be initial wealth, � be the probability of loss, L be the lottery. If an individual receives $1 for
$� paid to insurance company we call it a fair price. This is because given this price the company�s expected

pro�t is 0: �� � 1� �� = 0*
w � L(with � probability)
w(with 1� � probability)
the lottery without insurance

*
w � L� �� + � � 1(with � probability)
w � ��(with 1� � probability)

the lottery with insurance

Eu(ex) = (1� �)u(w � ��) + �u(w � L+ �(1� �))! max
�

FOC : (1� �)(��)u0(w � ��) + �(1� �)u0(w � L+ �(1� �)) = 0
u0(w � L+ �(1� �))� u0(w � ��) = 0
u00(�) < 0) u0(�) is strictly decreasing
w � L+ �(1� �) = w � �� ) � = L

Thus, the RA agent ends up with full insurance:*
w � L� L� = w � L�(with � probability)
w � L�(with 1� � probability)

That is his payo¤ is the same in both states.

4.4.2 Stock market

Claim 4.17 RA agent will always buy a risky asset with strictly positive excess return.

Proof. Let w be an initial wealth and assume that there are two assets: a riskless asset with return � , that
is invest $1 receive $� ; and a risky asset with return ex. The question is how much to invest into the risky
asset? Investing � units of risky assets gives income

y = �ex+ �(w � �) = �(ex� �) + �w
Eu(ex) = �piu(�(ex� �) + �w)! max

�

First, if 8j xj > � , if on the other hand �� = w and 8j xj < � then �� = 0. Taking the �rst-order

conditions we get

FOC : U 0(�) = �pi(xi � �)u0(�(ex� �) + �w) = 0:
As we know these conditions are applicable only if we the solution is interior. When can we have a

corner solution, speci�cally when � = 0 is optimal? This would happen if U 0(0) 6 0 and U 00(0) 6 0.

U 00(�) = �pi(xi � �)2| {z }
>0

u00(�(ex� �) + �w)| {z }
<0

< 0; so � = 0 is optimal, U 0(0) 6 0:
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UÝJÞ
0 can be maximum

U vÝ0Þ . 0

UÝJÞ

U vÝ0Þ > 0
0 cannot be maximum

U 0(0) = �pi(xi � �)u0(�w), �pixi = E(ex) 6 �
= u0(�w)| {z }

>0

(�pixi � ��pi)| {z }
60

When E(ex) 6 � ; a RA individual doesn�t buy a risky asset. When E(ex) > �; a RA individual will choose
� > 0. E(ex) � � is called excess return because it shows how much the risky asset is more pro�table then
the riskless asset.

4.4.3 Risk-aversion coe¢ cient

An interesting question is how � changes with w? In order to answer this question we will need to know

how to measure risk-aversion?

De�nition 4.18 Absolute RA coe¢ cient: Ra = �
u00(x)

u0(x)
> 0 (Arrow-Pratt coe¢ cient)

For example, for u(x) = � � 
e�ax absolute risk aversion coe¢ cient is constant. This family of utility
functions is called CARA utility functions (constant absolute risk aversion) utility function. It is easy to

see that the Arrow-Pratt coe¢ cient is constant: u0(x) = a
e�ax; u00(x) = �a2
e�ax; Ra = �u
00(x)

u0(x)
= a;

CARA) d�

dw
= 0.

Claim 4.19 If investors have CARA utility function then � doesn�t change with the change of w:

Proof. FOC : U 0(�) = ��i(xi � �)u0(�(xi � �) + �w) = 0 = F (�;w). By Implicit Function Theorem,

d�

dw
= �@F=@w

@F=@�
= ���i(xi � �)� � u

00(�(xi � �) + �w)
��i(xi � �)2u00(�(xi � �) + �w)

=
��i(xi � �)� � �u0(�(xi � �) + �w)
��i(xi � �)2u00(�(xi � �) + �w)

= 0:
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Thus investors with constant risk aversion always invest the same amount of money into the risky asset

regardless of their wealth.

De�nition 4.20 Relative RA coe¢ cient Rr = �x
u00(x)

u0(x)

For example, if u(x) = lnx; then Rr(x) is constant: u0(x) =
1

x
, u00(x) = � 1

x2
; Rr(x) = x �

1

x2
�x = 1. Such

functions are called CRRA (constant relative risk-aversion). For CRRA-utility functions ) d(�=w)

dw
= 0;

that is proportion of � in w doesn�t change with the change of w (Problem Set).

5 Production

5.1 Basic de�nitions

� Firms: buy inputs, transform them into outputs and maximize pro�t.

� Production: process of transforming inputs into outputs.

� Technology: determines restrictions on what is possible by production.

Assume a �rm uses n inputs to produce 1 output. Technology can be described by a production function:

y = f(x1; x2; ::xn): It is an increasing function with respect to each input xi. We call
@f(x1; x2; ::xn)

@xi
=

MPi marginal product of input i; which is similar to marginal utilityMUi:MRTS( marginal rate of technical

substitution) is the absolute value of the slope of the isoquant.

Example 5.1 f(K;L) = K�L� = y Cobb-Douglas production function,

y = K�L�

MPK =
@f

@K
= @K��1L�

MPL =
@f

@L
= �K�L��1

MRTSij =
MPi
MPj

MRTSL;K =
MPL
MPK

=
�K�L��1

@K��1L�
=
�K

�L

De�nition 5.2 We classify the production functions in the following way:

� if f(tx) = f(tx1; : : : ; txn) = tf(x) 8x and 8t > 0 then f exhibits constant return to scale (CRS)

� if f(tx) = f(tx1; : : : ; txn) > tf(x) 8x and 8t > 1 then f exhibits increasing return to scale (IRS)

� if f(tx) = f(tx1; : : : ; txn) < tf(x) 8x and 8t > 1 then f exhibits decreasing return to scale (DRS)

Example 5.3 f(K;L) = K�L� ;

f(tK; tL) = t�+�K�L� = t�+�f(K;L)

if �+ � > 1) IRS

if �+ � = 1) CRS

if �+ � < 1) DRS
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5.2 Cost function

5.2.1 Long-run cost function

Assume that input prices are given w = (w1; w2; ::wn) by perfect competition market, that is the �rm is

small and is a price-taker. Then the �rm cost-minimization problem is(
minx w1x1 + :::+ wnxn

st:f(x1; ::xn) = y

L = w1x1 + :::+ wnxn + �(y � f(x1; ::xn))
@L

@xi
= wi � �

@f(x)

@xi
= 0

@L

@�
= y � f(x1; ::xn) = 0

) wi
wj

=
MPi
MPj

=MRTSij

De�nition 5.4 The input values that minimize the cost are called the conditional input demand x(w; y).
Notice that the conditional input demand depends on input prices and the desired output level, y. We callP

i wixi(y; w) a �rm�s cost function c(w; y).

Example 5.5 f = K�L� (
minK;L wKK + wLL

st:K�L� = y

wK
wL

=
�L

�K
) K =

�L

�
� wK
wL

(
�L

�
� wK
wL

)�L� = y

) L = [
y

(�� �
wL
wK
)�
]

1
�+� ;K = [

y

(�� �
wK
wL
)�
]

1
�+�

c(w; y) = wK � [
y

(�� �
wK
wL
)�
]

1
�+� + wL � [

y

(�� �
wL
wK
)�
]

1
�+�

Properties of cost function
1. x(w; y) is homogeneous of degree 0 with respect to w: x(tw; y) = x(w; y)

2. c(w; y) is homogeneous of degree 1 with respect to w: c(tw; y) = tc(w; y)

c(tw; y) = tw1x(tw; y) + :::+ twnx(tw; y)

= tw1x(w; y) + :::+ twnx(w; y) = tc(w; y)

3. c(w; y) is increasing with respect to y and w.

4. c(w; y) is concave in w.

5. Shephard Lemma:
@c(w; y)

@wi
= xi(w; y):

Proofs of these properties are identical to the proofs of properties of the expenditure function.

We will also refer to c(w; y) as long-run cost function. The reason is that the �rm can choose di¤erent

levels of inputs which is usually possible only in the long-run.
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De�nition 5.6 Long-run average and long-run marginal costs are de�ned as follows:

LRAC(w; y) =
c(w; y)

y

LRMC(w; y) =
@c(w; y)

@y

Claim 5.7 If long-run Average Cost is increasing with respect to y; then LRMC(y) > LRAC(y) If long-run
Average Cost is decreasing with respect to y then LRMC(y) < LRAC(y).

Proof. We want to prove that LRMC(y) > LRAC(y): By de�nition LRAC(w; y) =
c(w; y)

y
so

�
c(w; y)

y

�0
=
c0(w; y)y � c(w; y)

y2
=
1

y

�c0(w; y)
y
MC

� c(w; y)
y
AC

�
> 0

,MC > AC

MC

AC
AC

MC

MC
AC

5.2.2 Short-run cost function

In the short run �rm cannot vary all of its inputs. Let us assume that in total there are n inputs and among

them values of inputs xm+1; ::xn are �xed. The cost-minimization problem is(
minx1;;xm w1x1 + :::+ wmxm + wm+1xm+1 + ::+ wnxn

st:f(x) = y

Example 5.8 Let f(K;L) = K�L� so that inputs are K and L.(
minL wKK + wLL

st:K
�
L� = y

) L = (
y

K
� )

1
� ;

Thus the short-run cost function is SC(w; y;K) = wKK + wL(
y

K
� )

1
� . Here wKK is the �xed cost

doesn�t depend on y. Term wL(
y

K
� )

1
� is the variable cost that depends on y.

In the same way as we did for the long-run cost function we can de�ne short-run marginal and average

costs:

SRAC(w; y;K) =
sc(w; y;K)

y

SRMC(w; y;K) =
@sc(w; y;K)

@y
:
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SR

LR

SR/LR

LR

SR

K

L

Also it is clear that c(w; y) 6 sc(w; y;K) for any K; since we have less degrees of freedom to minimize

cost.

If K = K(w; y)) c(w; y) = sc(w; y;K(w; y)) and so at this point short-run cost is minimal. That is

@sc(w; y;K)

@K
= 0 when K = K(w; y):

In addition we can see that

@c(w; y)

@y
=
@sc(w; y;K(w; y))

@y
+
@sc(w; y;K(w; y))

@K| {z }
=0

� @K(w; y)
@y

;

where the second term is equal to zero, because of the FOC. Thus, we have that short-run cost is always

greater than long-run cost and at levels where SRC = LRC, they are tangent as shown on the picture.

c

y

lcÝw, yÞscÝw, y, K1Þ

scÝw, y, K2Þ

5.3 Pro�t function

Assume that �rm is small so that the output price doesn�t depend on �rm�s behavior. Then given the input

prices w = (w1; w2; ::wn) �rm�s maximization problem is(
maxx;y py � �wixi
st:y = f(x)

, maxx;y pf(x)� �wixi
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FOC : p
@f(x)

@xi
� wi = 0 p

@f(x)

@xj
� wj = 0

) @f(x)=@xi
@f(x)=@xj

=
wi
wj

=MRTSij

) x(p; w)

Solution to this problem is x(p; w) � input demand. The di¤erence from conditional input demand

x(y; w) is that x(y; w) depends on y so that x(y; w) is the input demand condition on the output level. The

output produced by the �rm in the optimum � y(p; w) = f(x(p; w))� is called output supply function.

Obviously, x(y(p; w); w) = x(p; w), that is conditional input demand=input demand. This is because

they satisfy the same FOC and y = f(x):

Note that �(p; w) may be not de�ned in each situation. For example, when f(x) has IRS, assume that

9x0; y0 that maximize pro�t, and optimal pro�t is nonnegative, then

pf(tx0)� t�wix0i > ptf(x0)� t�wix0i = t(pf(x0)� �wix0i) = t�(p; w)

The �rm could always increase its pro�t by demanding tx0, and thus the �rm would have in�nite demand

for inputs and would produce in�nite output. Similarly, if f(x) has CRS then unless the optimal pro�t is

zero we run into the same problem:

pf(tx0)� t�wix0i = t(pf(x0)� �wix0i) = t�(p; w) > �(p; w)

From now on assume that �(p; w) is well de�ned.

Properties of pro�t function:
1. � is increasing with respect to p.

2. � is decreasing with respect to w.

3. � is homogeneous function of degree 1 in (p; w) that is �(�p; �w) = ��(p; w).

4. Hotelling Lemma.
@�(p; w)

@p
= y(p; w) and � @�(p; w)

@wi
= xi(p; w):

The �rst equation is > 0; which is the proof of 1. The second equation is 6 0, which is the proof of 2.
5. �(p; w) is convex in (p; w):

Proof. Assume that given (p0; w0); the �rm chooses (y0; x0) and given (p1; w1); the �rm chooses (y1; x1).

We want to prove that

�(�p0 + (1� �)p1; �w0 + (1� �)w1) 6 ��(p0; w0) + (1� �)�(p1; w1) 8� 2 [0; 1]:

Indeed,

�(p0; w0) = p0y0 � w0x0 > p0y� � w0x�

because (y0; x0) maximizes pro�t given (p0; w0): Similarly,

�(p1; w1) = p1y1 � w1x1 > p1y� � w1x�

From these two inequalities we can get

��(p0; w0) + (1� �)�(p1; w1) > �(�p0 + (1� �)p1; �w0 + (1� �)w1) = p�y� � w�x�
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Example 5.9 f(K;L) = K�L� �+ � 6 1

max
K;L

�(p; w) = pK�L� � wKK � wLL

FOC : �pK��1L� = wK

�pK�L��1 = wL

In short-run, capital is �xed at K:

max
L
�(p; w) = pK

�
L� � wKK � wLL

FOC : �pK�L��1 = wL

Then,

L� = (
wL
�pK�

)
1

��1 = w
1

��1
L � �

1
1�� � p

1
1�� � (K�

)
1

1��
= w

1
��1
L � �

1
1�� � p

1
1�� �K (� = 1� �)

So the short-run pro�t is

SR�(p; wL; wK ;K) = w
�

��1
L � �

�
1�� � p

1
1�� �K � wKK:

Finally, we can derive a supply function in two ways. Either plug L� into the production function, or use

the Hotelling Lemma that is
@�

@p
= y(p; w):

We conclude this section with the observation that the short-run pro�t can be negative. Indeed,

SR�(p; wL; wK ;K) = max
y
py � SC(y; wL; wK ;K)

FOC : p =
@SC(y)

@y
= SRMC(y):

Suppose now that the solution y1 > 0 and so in order to �nd the optimal production level we need to

compare SR�(y1) with SR�(0): SR�(0) = 0 � wKK � 0 = �wKK < 0: SR�(y1) can be negative, for

example if wKK is huge.

SR�(y1) = py1 � FC � V C(y1)
SR�(0) = 0� FC

Thus,

�(y1) > �(0), py1 � V C(y1) > 0, p >
V C(y1)

y1

6 Partial equilibrium

There are two elements in partial equilibrium. The �rst one we consider a market for only one good:

input prices are �xed and prices for other commodities are also �xed. The second: the market is perfectly

competitive, that is �rms and companies are price-takers.
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Consumers behavior is determined by utility-maximization. In particular, from this we derive their

demand functions. Assume we have I consumers with demand: qi(p; ep; yi) = qi(p): Here p is the price of the
good, ep is the price of other goods, and yi is the income of consumer i. The total demand is

�qi(p) = qD(p)

Firms maximize pro�ts, from which we can derive their supply functions. Assume there are J �rms:

qj(p; w) = qj(p). Since w is �xed we drop it from the notations. Total supply is

�qj(p) = qS(p)

In the equilibrium

qD(p) = qS(p)

Example 6.1 In short-run, suppose there are 48 identical �rms with Cobb-Douglas production function
f(K;L) = K

1��
L�, let � = 1

2 ; wL = 4; wK = 1;K = 1: We already know that

qj(p) = w
�

��1
L � � �

1�� � p
�

1�� �K

So qj(p) =
p

8
; and qS(p) = 48(

p

8
) = 6p: Assume the total demand is qD(p) =

294

p
: In the equilibrium:

294

p
= 6p) peq = 7; qeq = 42; q

j(peq) =
7

8

SR�j(peq) = w
�

��1
L � �

�
1�� � p

1
1�� �K � wKK =

33

16

The di¤erence between short-run and the long-run is that in the short-run number of �rms is �xed. On

the other hand in the long-run �rms can enter or exit the market until each �rm earns zero pro�t (otherwise

if � > 0; new �rms will enter; if � < 0; �rms will exit). This gives us a condition on number of �rms in the

long-run. To sum up we �nd market equilibrium in the long-run and in the short-run di¤erently:

SR

(
�qj(p) = �qi(p)

J is given
LR

(
�qj(p) = �qi(p)

�j(peq) = 0
.

Example 6.2 Assume total demand is qD(p) = 230 � 30p; �rm�s pro�t is �j(p) = 16

p2
+
35

8
p � 375

16
: Then

from Hotelling Lemma, the supply function is qj(p) =
@�j(p)

@p
=
1

8
(p+ 35): In the long-run

�j(peq) = 0) peq = 5

Then qD(peq) = 80; qj(peq) = 5) J =
80

5
= 16:

In long-run, from FOC P =MC(qj): From zero-pro�t condition that �rm j produces qj when AC(qj) =

MC(qj); because

�j(p) = pqj � c(qj) = 0; p = c(qj)

qj
= AC(qj)
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6.1 E¢ ciency of competitive outcome

De�nition 6.3 Whenever it is possible to make someone better o¤ without make any one else worse o¤, we
say that Pareto improvement can be made.

De�nition 6.4 If there is no way to make Pareto improvement then the situation is Pareto e¢ cient.

Suppose there are only one consumer and one �rm in competitive market. Consumer surplus at p0; q0 is

an area below Marshland demand curve and above p0: Consumer surplus at p0; q0 is a measure of how much

money consumer is willing to pay for the right of buying q0 units good at price p0:

CS

p0

q0 q

p

D(p)

Example 6.5 Suppose a consumer�s willingness to pay for ice-cream is Vi = 5$; the market price of ice-

cream is pj = 2$; so CS = 3$;. Now suppose that V1 is the value of the �rst unit of ice-cream,V2 is the

valuation of the second unit of ice-cream, and V3 is valuation of the third unit of ice-cream. Then

q

p
V1

V2

V3

P

P’
D(p)

1 2 3

CS1 = (V1 � p) � 1
CS2 = (V1 � p0) � 1 + (V2 � p0) � 1

Producer Surplus(PS)= revenue�total variable cost (we neglect �xed cost here). If �xed cost is equal to

zero, then

PS = �rms pro�ts

If we depict p = MC(q) as the supply curve, and revenue=p0q0; then we can get that PS = p0q �
q0Z
0

MC(q)dq and TV C =

q0Z
0

MC(q)dq = C(q0)� C(0); as the following picture shows:
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p0

q0

S(p)

q

p

PS

We can get Pareto e¢ cient from the intersection of supply curve and demand curve as following picture

shows:

p0

S(p)

q

p

D(p)

q0

CS

PS

6.2 Tax incidence

Assume the market demand function is qD(p); and the market supply function is qS(p): Consumer has to

pay tax t for each unit he buys, that is the price he pays is peq + t: Then the new equilibrium price is a

function of t:

qD(p+ t) = qS(p)

Now, let�s consider the elasticity of price (�). By FOC,

@qD(p+ t)

@p
� (@p
@t
+ 1) =

@qS(p)

@p
� @p
@t

) @p

@t
=

@qD(p+ t)=@p

@qS(p)=@p� @qD(p)=@p < 0

=
@qD(p)=@p � p=qD

@qS(p)=@p � p=qS � @qD(p)=@p � p=qD

=
�D

�S � �D
< 0

Thus whether in equilibrium the price will increase or decrease as we introduce tax depends on elasticities

of demand and supply functions.

30



The price elasticity of consumer is

@pD

@t
=
@(p+ t)

@p
=

�D
�S � �D

+ 1 =
�S

�S � �D
> 0

Example 6.6 Assume �D = 0; then
@p

@t
= 0 and

@pD

@t
= 1; so consumers pay tax in this condition.

S(p)D(p)

qq0

p

p eq

p eq + t

Assume �D =1; then
@p

@t
= �1 and @p

D

@t
= 0; so �rms pay tax in this condition.

S(p)

D(p)

q

p

p eq

p eq ? t

Assume consumers and �rms share the tax together at last, then

S(p)

q

p

D(p)

CS

PS

p

p+t
Govement
revenue

DWL

7 General equilibrium

Suppose there are I individuals, N commodities, and no production in the economy. Each individual

has < and initial endowment, ein, where i stands for individual and n for commodity. Let e
1 = (e11; e

1
2);
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e2 = (e21; e
2
2); then

e = e1 + e2 = (e11 + e
2
1; e

1
2 + e

2
2):

We can use Edgeworth box to depict the above conditions. Each input in the Edgeworth box represents

a feasible allocation.

e2
1 + e2

2

e1
1 + e1

2

e

Agent 1

Agent 2

e1
1

e1
2

e2
1

e2
2

If we de�ne allocation as x = (x1; x2); then the feasible allocation is x1 + x2 = e1 + e2; that is(
x11 + x

2
1 = e

1
1 + e

2
1

x12 + x
2
2 = e

1
2 + e

2
2

Assume agents have e initial endowment; there is no money and no market; only goods exchange can

take place and the exchange is voluntary here. Then what is the outcome?

Agent 1

Agent 2

A

B
C

e

z

As we can see in the above picture, �rst, the exchange cannot end up in A area or B area: This is because

one guy will be worse o¤ in that condition and will not be willing to trade. No one will refuse to move to C

area. Second, if they end at point y; they still have incentive to trade. Finally, at point z; indi¤erence curve

are tangent, so they don�t trade.

De�nition 7.1 An allocation inside the Edgeworth box is Pareto e¢ cient if there is no other feasible allo-
cation y = (y1; y2) such that y1 < x1; y2 < x2; with at least one inequality strict.

De�nition 7.2 A set of all Pareto e¢ cient allocations in the Edgeworth box is called contract curve.
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Agent 1

Agent 2

Contract
curve

Note that starting from e will �nish on a contract curve which is between the indi¤erence curves passing

through e:

Now assume there are I consumers, N goods. The initial endowment is n vector e = (e1; ; eI); allocation

is x = (x1; ; xI); and the speci�ed bundle for each i consumer is xi = (xi1; ; x
i
N ):

De�nition 7.3 An allocation is feasible if 8n �xin = �ein:

De�nition 7.4 An allocation x is Pareto e¢ cient if there is no other feasible allocation y; so that yi <i xi
8i and at least one is strict. Without markets, consumers will end up on a Pareto e¢ cient allocation.

7.1 Equilibrium in competitive markets

Assume all agents are small, so they do not a¤ect the price. Assume also that agent preferences are contin-

uous, monotone and convex.

Denote price for N goods as p = (p1; ; ; pN ): If consumer i with initial endowment ei ends up with a

bundle xi; then there are three possibilities:

� xin � ein > 0 that is i buys xin � ein units of good n and pays pn(xin � ein);

� xin � ein < 0 that is i sells xin � ein of good n and receives pn(xin � ein);

� xin � ein = 0 that is i just consumes his endowment of good n:

The budget constraint for a consumer with endowment ei and prices p is that money spend on trade are

less or equal than money received from the trade. Assume that preferences are monotone and then we can

write it as

�
xin>e

i
n

pn(x
i
n � ein) = �

xin<e
i
n

pn(e
i
n � xin)) �pnx

i
n = �pne

i
n

Informally, in the equilibrium

i) each consumer should maximize his utility given his endowment and prices;

ii) total supply should be equal to total demand.

De�nition 7.5 Excess demand for good n is total demand for good n minus total supply of good n that is

zn(p) = �(x
i
n(p; p � ei)� ein) = �xin(p; p � ei)| {z }

TD

� �ein|{z}
TS

If zn(p) > 0; then TD > TS; if zn(p) < 0; then TD < TS; if zn(p) = 0; then market clears.
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De�nition 7.6 The aggregate excess demand function is z(p) = (z1(p); ; ; zn(p)):

Properties of z(p) :
1. z(p) is continuous, because demand is continuous.

2. z(p) is homogeneous of degree 0 in p:

zn(�p) = �x
i
n(�p; �p � ei)� �ein = �xin(p; p � ei)� �ein = zn(p)

3. Walras law: for any p;

p � z(p) = 0, p1z1(p) + p2z2(p) + ::+ pnzn(p) = 0

Proof. Because budget consumption should hold with equality, then

�Nn=1pn(x
i
n(p; p � ei)� ein) = 0

�Ii=1�
N
n=1pn(x

i
n(p; p � ei)� ein) = 0

�Nn=1pn�
I
i=1(x

i
n(p; p � ei)� ein) = 0

) �Nn=1pnzn(p) = 0

Example 7.7 Assume N = 2; from Walras law we know that: p1z1(p) + p2z2(p) = 0; if p1z1(p) > 0 )
p2z2(p) < 0; if p1z1(p) < 0) p2z2(p) > 0; if p1z1(p) = 0) p2z2(p) = 0: Generally, we can get

p1z1(p) + p2z2(p) + ::+ pnzn(p) = 0

so

z1(p) = z2(p) = :: = zn�1(p)) zn(p) = 0:

De�nition 7.8 In competitive market, p� 2 RN++ is called a Walrasian equilibrium price if z(p�) = 0:

How to �nd Walrasian equilibrium? Given <i; ei; we can �nd xi(p; p � ei) = (xi1(p; p � ei); ; xin(p; p � ei))
for each consumer and then derive z(p) = (z1(p); ; ; zn(p)): Having found z(p) we need to �nd p� such that

z(p�) = 0:

Notice that from the Walras law it follows that the system z(p) = 0 has n�1 independent equations thus
we have one degree of freedom. In particular, we can assume that p�1 = 1. Having found the equilibrium

price we can �nd equilibrium allocation: x� = (x1(p�; p� � ei); x2(p�; p� � ei); ; xI(p�; p� � ei)):

Example 7.9 Assume I = 2; N = 2, the initial endowment for each agent is e1 = (1; 0); e2(0; 1); and the

utility function for them is u1(x1; x2) = u2(x1; x2) =
p
x1 +

p
x2:

For the �rst agent,

(
maxx1;x2

p
x1 +

p
x2

p1x1 + p2x2 = p1 � 1 + p2 � 0
; thus the Lagrange function is

L =
p
x1 +

p
x2 + �(p1 � p1x1 � p2x2)

FOC :
@L

@x1
=

1

2
p
x1
� �p1 = 0;

@L

@x2
=

1

2
p
x2
� �p2 = 0

) x2 = (
p1
p2
)2x1
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Plugging x2 into budget constraint,

p1x1 + p2(
p1
p2
)2x1 = p1

) x11 =
p2

p1 + p2
; x12 =

p1
p1 + p2

For the second agent,

(
maxx1;x2

p
x1 +

p
x2

p1x1 + p2x2 = p1 � 0 + p2 � 1
; from FOC we get x21 =

p2
p1
� p2
p1 + p2

; x22 =
p1

p1 + p2
:

For good 1, let p�1 = 1;

z1(p) =
p2

p1 + p2
+
p2
p1
� p2
p1 + p2

� 1 = 0

, z1(p) =
p2

1 + p2
+
p2
1
� p2
1 + p2

� 1 = 0

) p�2 = 1

So the equilibrium price is p�1 = p
�
2 = 1; Walrasian allocation is x

�
1(p

�) =

�
1

2
;
1

2

�
; x�2(p

�) =

�
1

2
;
1

2

�
:

Agent 1

Agent 2Budget line

x1

x2

1/2

1/2

IC1

IC2

x1
D = x 2

D

Theorem 7.10 Assume that consumer�s utility are continuous, strict increasing and strictly quasiconcave.
Assume also that �ei >> 0. Then 9p� such that z(p�) = 0 that is Walrasian Equilibrium.

8 General Equilibrium and Welfare

De�nition 8.1 An allocation x is Pareto e¢ cient if there is no other feasible allocation y; so that yi <i xi
8i with at least one preference being strict.

Theorem 8.2 (First Welfare Theorem) Any competitive equilibrium allocation is PE.

Proof. Assume not. Let (p; x) be a WE and assume there exists feasible y such that yi < xi (with at least
one strict). Take person i for whom yi � xi. Then pyi > pxi (why?). For any person j for whom yj < xj it
has to be the case that pyj > pxj . Then we can get

p�ej = p�yj > p�xj = p�ej ;

which is a contradiction.

We have just established that any WE is PE however just Pareto e¢ ciency might be not enough. As

we remember Pareto E¢ ciency has nothing to do with fairness. In particular it could be possible that in
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the equilibrium allocation one agent receives almost everything and all other agents receive almost nothing.

While this is still Pareto e¢ cient the government may want to interfere and try to achieve a resource allocation

that is more even. At the same time the government does not want to sacri�ce the e¢ ciency. As the Second

Welfare Theorem shows any Pareto e¢ cient allocation can be achieved as a WE after appropriate transfers.

For example, if there is a PE allocation that the government (for whatever reasons) believes is more fair then

it can be achieved in equilibrium after some transfers.

In the proof of the SWT we will use the following result.

Theorem 8.3 (Separating Hyperplane Theorem) A convex set A � Rn; w 2 Rn; w =2 int(A); then

9p 2 Rn st pz > pw for any z 2 int(A): The theorem can be shown by the following picture.

Theorem 8.4 (Second Welfare Theorem) Assume that preferences of all agents in the economy are
strictly convex. Let x be a PE allocation, then 9p st.(p; x) is a WE of the economy with endowment x:

In other words, FWT says that any WE is PE. The SWT says that any PE allocation can be achieved

as WE after transfers.

Proof. Suppose x is PE allocation. Let P i = fyi 2 RN ; yi <i xig. It is easy to see that P i is convex because
preferences are strictly convex. De�ne P = fy 2 RN ; y = �yi; when yi 2 P ig:
Step 1: P is a convex set. Indeed, since y 2 P it has to be that y = �yi; yi 2 P i. Similarly, since y0 2 P

we have that y0 = �yi0; yi0 2 P i. Then �y + (1� �)y0 =
P

i y
i� 2 P where yi� = �yi + (1� �)yi0 2 P i.

Step 2: Given that w = �ei = �xi; we will show that w =2 int(P ). Indeed, since x is PE if w 2 int(P )
then

w = �y + (1� �)y0

y = �yi; yi <i xi

y0 = �yi0; yi0 <i xi

) yi� = �yi + (1� �)yi0 > xi

Thus y = (y1�; y2�; ; ; yI�) is feasible, because �yi� = ��yi + (1� �)�yi0 = w; and then xi could not be
PE. This proves that w =2 int(P ): However, w 2 P; because w = �xi; and xi <i xi ) xi 2 P i:
Step 3: By the Separating Hyperplane Theorem 9p such that pz > pw;8z 2 int(P ). It can be shown

that p >> 0. We do not provide a formal proof but the idea is that if pj � 0 then ~xij ! 1 for any such

j. This would involve a contradiction because on one hand consumer�s demand ~x would satisfy the budget

constraint (since price of good j is non-positive) at the same time the consumer�s demand ~x 2 P and by the
Separating Hyperplane Theorem it should be that p~x > pw.

Step 4: Given that p >> 0 it can be shown that (p; x) is a WE. Assume not, then 9i; yi st. yi > xi and
pyi = pxi (i.e. yi is a¤ordable). Let

yj = xj ;8j 6= i and z =
nX
j=1

yj :

Since pyj = pxj it has to be the case that pz = pw.

The last step is to show that z 2 int(P ) which will be a contradiction to the fact that pz = pw. However,
this is obvious because yi � xi and so yi 2 int(P i) and yj 2 P j for j 6= i.
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9 General equilibrium with production

There are two new issues in general equilibrium with production. The �rst one is distributing �rm�s pro�t

across consumers. The second one is that since input of one �rm can be output of another. Consequently,

we cannot classify goods as inputs and outputs. We adopt the following sign convention: if a sign is less

than zero, then �rm uses good as an input; if a sign is greater than zero, then the �rm uses the good as an

output.

Suppose there are J �rms, yj 2 RN is a production plan of �rm j; and Y j � RN is a set of all production
plans.

Example 9.1 Y = f(�x1;�x2; x3) : 0 6 x1 6 100; 0 6 x2 6 100; 0 6 x3 6 f(x1; x2)g
Y = f(�x1; x2) : 0 6 x1 6 100; 0 6 x2 6

p
x1g

x2

x10­100

x1

§+
2

Assumption on Y j :
1. 0 2 Y j ; means �rm can decide to produce nothing.

2. Y j \ RN+ = f0g; means to produce output you need inputs.
3. Y j is closed and bounded.

4. Y j is strictly convex.

The last assumption rules out IRS and CRS.

As before �rm j chooses yj 2 Y j to max its pro�t. Let p >> 0; yj = (yj1; ; ; y
j
N ); and py

j = p1y
j
1 + p2y

j
2 +

::+pNy
j
N . If y

j
N < 0; then pNy

j
N is a part of a �rm�s cost; if y

j
N > 0; then pNy

j
N is a part of a �rm�s revenue.

The �rm�s problem is

max
yj2Y j

p � yj

The solution to this problem is yj(p) which is both output supply and input demands. When yj(p) > 0;

it�s output, when yj(p) < 0; it�s input. Given yj(p); the pro�t function of �rm j is

�j(p) = p � yj(p):

Obviously, yj(p) is homogeneous of degree 0 with respect to price, and �j(p) is homogeneous of degree 1

with respect to price:

�j(tp) = tp � yj(tp) = tp � yj(p) = t � �j(p):

Assume there are I consumers, and �ij is a share of consumers i in �rm j so that 0 6 �ij 6 1 andP
i �
ij = 1. The consumer�s budget constraint is

pxi 6 pei +
J

�
j=1
�ij�j(p)
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The right side of this inequality is homogeneous of degree 1 because �j(p) is homogeneous of degree 1:

The consumer problem is 8<: maxu(xi) xi 2 Rn+
st: pxi 6 pei +

J

�
j=1
�ij�j(p)

Consumer demand is xi(p); which is homogeneous of degree 0:

De�nition 9.2 Excess demand for good n is

zn(p) = �
i
xin(p)� �

i
ein � �

i
yjn(p):

Excess demand is a vector z(p) = (z1(p); z2(p); ; zn(p)) and it is homogeneous of degree 0 with respect to

price.

Claim 9.3 (Walras law) 8p >> 0; p � z(p) = 0

Proof. From the budget constraint,

pxi � pei �
J

�
j=1
�ij�j(p) = pxi � pei �

J

�
j=1
�ijpyj(p) = 0

Sum it up for all i; and change the order of summation,

IX
i=1

pxi �
IX
i=1

pei �
IX
i=1

JX
j=1

�ijpyj(p) = 0;

p
IX
i=1

xi � p
IX
i=1

ei � p
JX
j=1

IX
i=1

�ijyj(p) = 0;

IX
i=1

xi �
IX
i=1

ei �
JX
j=1

IX
i=1

�ijyj(p) = 0;

) p � z(p) = 0:

De�nition 9.4 Consider an economy (ui; ei; �ij ; yj), where i = 1::I, and j = 1::J . Price vector p� is an

equilibrium price vector if z�(p) = 0:

On one hand a system z(p) = 0 is a system of N equations and N unknowns. However, from Walras

law, if z�1(p) = 0; ; ; z
�
n�1(p) = 0; then z

�
n(p) = 0, and so the last equations is redundant. At the same time

we know that z(p) is homogeneous of degree 0, so if z�(p) = 0, then z�(tp) = 0: Consequently when looking

for a WE we can set a price of one good to 1, for example, p1 = 1.

Given an equilibrium price p� x� = (x1(p�); ; xI(p�)); y� = (y1(p�); ; yI(p�)); (x�; y�) is a WE allocation.

De�nition 9.5 A Walrasian equilibrium is a triple (p; x; y) such that p is an equilibrium price vector, x is

consumer�s demand given p, and y is producer�s output supply and input demand given p.

Theorem 9.6 If <i are continuous, strictly increasing and convex and if our assumptions on the production
sets are satis�ed then WE exists.
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9.1 Robinson Crusoe Economy

Suppose there is one consumer and one �rm owned by the same consumer. We assume that consumption and

production decisions are made independently. There are two goods, h time and y coconuts. The production

set is

y = f(�h; y); 0 6 h 6 b; 0 6 y 6 h�g(0 < � < 1)

The utility function is u(h; y) = h1��y� ; initial endowment is e = (T; 0): p is price of coconuts, w is price

of time.

y

h0 T

wT + ^
p

T + ^
w

feasible

The �rm�s problem is 8<: max
h>0

py � wh

y = h�
) max

h
ph� � wh

First order condition

�ph��1 = w ) hf = (
w

�p
)

1
��1 = (

�p

w
)

1
1�� ; yf = h

�
f = (

�p

w
)

�
1�� :

Thus,

� = pyf � whf =
1� �
�

� w � (�p
w
)

1
1�� :

The consumer�s problem is (
maxh1��y�

st:py + wh = wT + �

First order condition

y(1� �)
h�

=
w

p
) yc =

�(wT + �)

p
; hc =

(1� �)(wT + �)
w

:

Suppose p� = 1; then hc(1; w) + hf (1; w) = T; that is

(1� �)(wT + �)
w

+ (
�p

w
)

1
1�� = T

) w� = �(
1� �(1� �)

��T
)1��

From the above equations, we can see that as T increases, w� decreases and as T decreases, w� increases.

Robinson Crusoe economy can be illustrated by the following picture, the shadow area is the feasible alloca-

tion of this economy. Robinson Crusoe cannot do any better than WE.
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9.2 Welfare Theorems in Economies with Production

Consider an economy (ui; ei; �ij ; yj); i = 1::I; j = 1::J:

De�nition 9.7 An allocation (x; y) is feasible if xi 2 Rn+; and yj 2 Y j ;8i; j; and

�xi = �ei +�yj :

De�nition 9.8 A feasible allocation is PE if there is no other feasible allocation (x; y) such that xi <i xi;
8i with at least one being strict.

In the de�nition we do not look at �rms because they are owned by consumers.

Theorem 9.9 (First Welfare Theorem) Any WE is PE.

Proof. Suppose (x; y) is WE and not PE. Then (x; y) is feasible and �
i
xi = �

i
ei + �

j
yj : There is feasible

allocation (x; y) st. xi <i xi; 8i with at least one strict. Let p� is equilibrium price, thenxk > xk ) p�xk >

p�xk and xi <i xi ) p�xi � p�xi for i 6= k. Consequently, p�
P
xi > p�

P
xi, and so p�(

P
ei +

P
yj) >

p�(
P
ei +

P
yj). Thus p�yj > p�yj and so 9j0 p�yj0 > p�yj0 . This means that �rm j0 did not maximize it�s

pro�t, which is contradiction.

Theorem 9.10 (Second Welfare Theorem) If (x; y) is PE, then there is income re-distribution T1; ; TI ;
such that �Ti = 0; and (x; y) is WE allocation of a new economy after transfers.

Proof. No proof

9.3 Adding time and uncertainty to GE models

Example 9.11 Assume there are contingent markets for two contingent goods x1; x2. For example, suppose
there are two states: warm weather tomorrow and cold weather tomorrow, x1 is ice-cream in warm weather(

in state 1) and x2 is ice-cream in cold weather ( in state 2), when you buy one unit of x1; you receive one

unit of ice-cream only if the weather is warm.

Suppose there are two consumers, two states of uncertainty and one good that will correspond to two

contingent goods. The utility function is u0(x1; x2) = q lnx1 + (1� q) lnx2; and endowments are e1 = (2; 1);
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e2 = (1; 2):Consumer�s demands are

x11(p1; p2) =
q(2p1 + p2)

p1
; x21(p1; p2) =

q(p1 + 2p2)

p1
:

x12(p1; p2) =
(1� q)(2p1 + p2)

p2
; x22(p1; p2) =

(1� q)(p1 + 2p2)
p2

:

The market clears when x11(p1; p2) + x
2
1(p1; p2) = 3: Set p1 = 1 and then

q(2p1 + p2)

1
+
q(p1 + 2p2)

1
= 3

) p2 =
1� q
q

) x11 = x
2
1 = 1 + q; x

1
2 = x

2
2 = 2� q

This is WE allocation. The agents face risk before the trade, but after the trade, they consume the same

amount of x1 and x2�full insurance. Also notice that higher q implies lower p2. This is intuitive because
for higher q state 2 is less probable.

Example 9.12 Add time to GE model. Suppose there is one good x and two periods, that is x1 is a

consumption of x at period 1 and x2 is a consumption of x at period 2. The utility function is u0(x1; x2) =

lnx1 + � lnx2; � 2 (0; 1): � is time preference. Endowments are e1 = (2; 1); e2 = (1; 2). Then WE allocation
is

x11(p1; p2) =
1

1 + �
(2 +

p2
p1
);

x21(p1; p2) =
1

1 + �
(1 +

2p2
p1
):

Market clears when x11(p1; p2) + x
2
1(p1; p2) = 3. Let p1 = 1; then p2 = �; x11 = x12 = 1 +

1

1 + �
and

x21 = x
2
2 = 2�

1

1 + �
:

10 Externalities

Why market failures exist in competitive market? There are three reasons: externalities, monopoly and

incomplete information.

De�nition 10.1 We say that there is an externality when one agent is directly a¤ected by actions of another
agent, such as loud music, pollution, tidy roommate and so on.

Example 10.2 Assume there are two consumers and two goods. Initial endowment are e1 = (4; 0); e2 =

(6; 4): Utility function for the two agents are u2(x21; x
2
2) = x21 + 2

p
x22; u

1(x11; x
1
2; x

2
2) = x11 + 2

p
x12 �

p
x22:

Let p1 = 1; then for the �rst agent: (
max
x1;x2

x11 + 2
p
x12 �

p
x22

st:x11 + p2x
1
2 = 4

This is equivalent to

max
x12

4� p2x12 + 2
q
x12 �

q
x22:

First order condition

�p2 +
1p
x12
= 0) x12 = (

1

p2
)2:
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For the second agent, (
maxx21 + 2

p
x22

st:x21 + p2x
2
2 = 6 + 4p2

This is equivalent to

max 6 + 4p2 � p2x22 + 2
q
x22:

First order condition

�p2 +
1p
x22
= 0) x22 = (

1

p2
)2:

Market clears when (
1

p2
)2 + (

1

p2
)2 = 4 ) p2 =

1p
2
; then the WE allocation is x1 = (4 �

p
2; 2); x2 =

(6 +
p
2; 2): Now we check whether WE is PE

MRS1 =
MU11
MU12

=
MU21
MU22

=MRS2

MRS1 =
1

1p
x12
+ 1

2
p
4�x12

=MRS2 =
1
1p
x22

=
1
1

2
p
4�x12

) x12 =
16

5
; x22 =

4

5

This is PE allocation. With externalities, WE is not PE, because the second agent eats too much of good

two. When the second agent maximizes his utility he ignores the adverse e¤ect on the �rst agent and this is

why he imposes too much of a negative externality on agent one.

10.1 Remedies

There are three major remedies for externalities: quotas, taxes/subsidies and property rights assignment.

1. Quotas: agent two can consume at most
4

5
of good two. Assume p1 = 1; p2 =

r
5

16
; then x12 =

16

5
:

The demand of x22 = 2, but given our restriction agent two will eat only
4

5
:

2. Taxation. Pigouvian taxes. The second agent has to pay tax t on each unit of x2 he consumes. In
addition the second agent receives (pays) a transfer of T2 so that his maximization problem becomes(

maxx21 + 2
p
x22

st:p1x
2
1 + (p2 + t)x

2
2 = 6p1 + 4p2 + T2

The maximization problem for the �rst agent is(
max
x1;x2

x11 + 2
p
x12 �

p
x22

st:p1x
1
1 + p2x

1
2 = 4p1 + T1

In addition we require that T1 + T2 = tx22. We would like to �nd t that would make agent 2 to consume

optimal amount of good 2. From the FOCs for agent 2 we get that x22 =
1

(p2)2
and so the equilibrium price

should be equal to p2 =

r
5

16
. When prices are p1 = 1; p2 =

r
5

16
we have that

FOC :
1

(p2 + t)2
= x22 =

1

(

r
5

16
+ t)2

) t =

p
5

4
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We can check that the market clears regardless of T1 and T2:

2�. Subsidy to consumer two for each unit below 4: The budget constraint for consumer two is

p1x
2
1 + p2x

2
2 = 6p1 + 4p2 + s(4� x22)� taxes

The government needs to have money to subside consumer 2. This is why it will tax somehow both

consumers. The budget constraint is equivalent to

p1x
2
1 + (p2 + s)x

2
2 = 6p1 + 4p2 + 4s� taxes

Thus we see that subsidy is the same as taxes.

3. Assigning Property Rights: Person one has a right to externality-free environment, that is agent
one has right to make x22 = 0. Agent two has initial endowment (6; 4), but can consume only (6; 0): The

idea is that agent two can pay to agent one T and give to agent one 4� x22 units of good 2 for the right to
consume x22. For the �rst agent,

max
T;x22

4 + T + 2
q
4� x22 �

q
x22

st: 6� T + 2
q
x22 > 6

In optimum the constraint will hold with equality and then 6� T + 2
p
x22 = 6) T = 2

p
x22; so

max
T;x22

4 + 2
q
x22 + 2

q
4� x22 �

q
x22

FOC :
1

2
p
x22
=

1p
4� x22

) x22 =
4

5

PE is restored here. The �rst agent can negotiate with the second agent before trade.

Alternatively, we could give all rights to consumer 2, that is he would have the right to produce as much

externalities as he wants. He can make take-it or leave-it o¤er to agent one, that is "give me T of good one,

I reduce my consumption of good 2 to x22 and you can get the rest of x2:" For the second agent,

max
T;x2

6 + T + 2
q
x22

st:4� T + 2
q
4� x22 �

q
x22 > 4�

p
4

It�s optimal to have " = "; then we can get 4�T+2
p
4� x22�

p
x22 = 4�

p
4) T =

p
4+2

p
4� x22�

p
x22;

so

max 6 +
p
4 + 2

q
4� x22 +

q
x22

FOC :
1

2
p
x22
=

1p
1� x22

) x22 =
4

5

In other words no matter how you assign property right, it is possible to restore e¢ ciency.

Theorem 10.3 (Coase Theorem) If property rights for externality are assigned, and negotiating is cost-
less, then it will result in an e¢ cient outcome, no matter how property rights are assigned.

43



10.2 Public goods

A public good is a commodity for which the use of a unit by one agent does not preclude its use by other

agents. There are two kinds of public good, the one is excludable public good, when it is possible to exclude

somebody to consume it, such as patent system, knowledge and toll roads; the other one is non-excludable

public good, such as national defense. The problem we face with public goods is that consumers don�t take

into account positive e¤ect of PG on other people, which leads to underprovision and free riding.

Example 10.4 Assume there are two consumers, one �rm and two goods: time and a public good. Initial

endowment is ei = (T; 0); the utility function is ui(xi; xj ; li) = 2
p
xi + xj + li; where xi + xj is the total

amount of PG. The �rm uses 2 units of labor to produce 1 unit of PG, that is y =
1

2
l. Let w = 1 then

consumer�s maximization problem is

For consumers (
max 2

p
xi + xj + li

st:pxi = (T � li) � 1
) max 2

p
xi + xj + T � pxi

xi =
1

p2
� xj ; xj = 1

p2
� xi

For �rms,

max p � 1
2
l � l

if p = 2) l = [0;+1)
if p < 2) l = 0

The second case is impossible in equilibrium, so it should be that p = 2; and thus xi+xj =
1

p2
=
1

4
> 0: In

a symmetric equilibrium, x1 = x2 =
1

8
, l1 = l2 = T � 1

4
, consumer�s utility u1 = 2

1p
4
+T � 1

4
= T +

3

4
= u2:

Now let�s look at the symmetric e¢ cient allocation. Assume each consumer works h hours, ui = 2
p
h+

T � h; h = h1 + h2
2

:

max
h
ui = 2

p
h+ T � h

1p
h
= 1) h = 1

ui = 2 + T � 1 = T + 1 > T + 3
4

In PE allocation, utilities are higher and consumers work more than in WE allocation.

11 Monopoly

We are now going back to the partial equilibrium framework. However, now we assume now that there is

only one �rm. It maximizes its pro�t given its technology (just as before) and consumer behavior in other

words given the consumer�s demand. The maximization problem is(
max
q
pq � C(q)

st:p = p(q)
) max p(q) � q � C(q)
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MC

MR

p

q

D(p)

pM

pPC

qM qPC

First order condition p0(q) � q+ p(q)�C 0(q) = 0 and so MR =MC, where MR = p0q+ p. The intuition
is that as you change q there are two e¤ects: �rst as q ! q + �q the revenue goes up by p(q)�q and at

the same time price falls down by p0(q)�q. The �rm looses on each unit it sells so revenue decreases by

p0(q)q�q. Total e¤ect is R0(q) = p(q) + p0(q)q. Notice also that since p0(q) < 0 it follows that R0(q) < p(q).

Consider the price elasticity of demand "(q) = q0(p) � p
q
:

MR = p0(q) � q + p(q) = p(q)[1 + p0(q) q

p(q)
]

p0(q) =
1

q0(p)
= p(q)[1 +

1

"(q)
]

MR =MC ) p(q)[1 +
1

"(q)
] =MC

When j"(q)j < 1 the demand is inelastic; p(q)[1 + 1

"(q)
] < 0; which cannot be equal to MC, so monopoly

will always choose 1 price. If j"(q)j > 1; then the demand is elastic and the price will be determined from
MC = p(q)[1 +

1

"(q)
]:And mark-up is

p�MC
p

= � 1

"(q)
; that is the higher is absolute value of demand

elasticity the smaller is the mark-up.

Example 11.1 Assume a constant elasticity utility function q(p) = A � p�b; then

q0(p) = �bA � p�b�1

"(q) = �bA � p�b�1 � p

A � p�b = �b

MC = p(1� 1
b
) = c) p =

cb

b� 1

We can see that the higher is b the less is p; and j"(q)j = b has to be greater than 1; or the monopoly price
will be 1.

The pictures below show the comparison of consumer surplus and producer surplus in a perfectly com-

petitive market and in a monopolized market.
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12 Price discrimination

De�nition 12.1 Price discrimination is selling di¤erent units of the same goods for di¤erent price, either
to the same or to di¤erent consumers.

The most common examples of price discrimination are student discounted tickets and wholesale dis-

counts.

There are three kinds of price discrimination.

1. First-degree PD: sellers charges di¤erent prices for each unit of good in such a way that the charged

price is equal to consumer�s maximum willingness to pay for this unit.

2. Second-degree PD: price depends only on quantity purchased, but is the same across consumers.

3. Third-degree PD: di¤erent consumers pay di¤erent prices, but each consumers pay the same price for

each unit, such as student discount.

Assume there are two consumers with utility ui(x) + m. We can think of ui(x) as the utility from

consuming the good and m as the utility of money. If ui(0) = 0; then what is the maximum WTP for x

units of good?

u(x;m) = ui(x)� ri(x) > ui(0)
) ri(x) 6 ui(x)

Max WTP is exactly ui(x): If we put price p into this problem, then

max
x
ui(x)� px:

By �rst order condition, we get consumer inverse demand function u0i(x) = p.

Now we can proceed to analyzing each type of price discrimination. In the analysis we will assume that

u2(x) > u1(x); u
0
2(x) > u

0
1(x) and c(x) = cx:

12.1 First-degree PD

Monopoly observes ui(x) and makes take-it or leave-it o¤er to each consumer. Consumer i can buy xi units

of the good and has to pay ui(xi). The monopoly�s problem is

max
x1;x2

u1(x1)� cx1 + u2(x2)� cx2

46



First order condition

u01(x1) = c; u
0
2(x2) = c

Here is the picture illustrating �rst-degree PD. x1 is the same amount that the consumer would receive

in a perfectly competitive market. However, under perfect competition, the consumer would pay cx1; and in

the case of monopoly, the consumer pays u1(x1) =

x1Z
0

u01(x1)dx; which is the sum of monopoly surplus and

monopoly cost.

p

c

x1 x

u1
v ÝxÞ

Monopoly cost

M surplus

In �rst-degree PD, the allocation coincides with the competitive allocation and thus it is e¢ cient (max

total surplus). However, it is the monopoly who gets this whole surplus. In contrast, in PC market, it were

consumers who would get all the surplus.

12.2 Second-degree PD

There is one good, one producer (monopolist) are two consumers 1 and 2, both have utility function ui(x)�m.
That is if they consumer x units of the good and pay m dollars their utility is ui(x)�m. We assume that the
�rst consumer values the good less than the second that is u1(x) < u2(x), and moreover that u01(x) < u

0
2(x).

The monopolist has a �xed marginal cost c of providing one unit of good. He wants to o¤er two bundles

(x1; r1) and (x2; r2) to these two consumers to maximize his revenue. Since the monopolist does not know

the type of consumer he needs to make sure that the �rst consumer prefers to buy the �rst bundle. Thus,

his maximization problem is 8>>>>>>>><>>>>>>>>:

maxr1;x1;r2;x2 r1 � cx1 + r2 � cx2
u1(x1)� r1 � 0 (IR1)

u2(x2)� r2 � 0 (IR2)

u1(x1)� r1 � u1(x2)� r2 (IC1)

u2(x2)� r2 � u2(x1)� r1 (IC2)

Solution. The �rst step is to show that (IR1) is binding and (IR2) is not. We start with the latter by

showing that (IR2) follows from (IR1) and (IC2). Indeed,

u2(x2)� r2 � u2(x1)� r1 � u1(x1)� r1 � 0:

The �rst inequality is (IC2), the second is assumption that u1(x) � u2(x) and the third is (IR1).
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Now we can show that (IR1) should be satis�ed with equality in the optimum. Assume not. That

is assume that (x1; r1) and (x2; r2) solve and u1(x1) � r1 > 0. Then consider bundles (x1; r1 + ") and

(x2; r2 + "). These two new bundles will give the monopolist higher pro�t. Moreover since the original

bundles satis�ed (IC1) and (IC2) the new bundles will satisfy them too. Finally as long " is small enough,

individual rationality constraints will be also satis�ed. Our problem now becomes8>>>>>><>>>>>>:

maxr1;x1;r2;x2 r1 � cx1 + r2 � cx2
u1(x1)� r1 = 0 (IR1)

u1(x1)� r1 � u1(x2)� r2 (IC1)

u2(x2)� r2 � u2(x1)� r1 (IC2)

Let us solve it without (IC1). Then we will show that the solution of the reduced problem will satisfy

(IC1) and thus will be the solution to the original problem. The reduced problem is8>>><>>>:
maxr1;x1;r2;x2 r1 � cx1 + r2 � cx2
u1(x1)� r1 = 0 (IR1)

u2(x2)� r2 � u2(x1)� r1 (IC2)

We can immediately see that (IC2) should hold with equality because otherwise we can just increase r2.

Thus the problem becomes

max
x1;x2

(u1(x1)� cx1) + (u2(x2)� u2(x1) + u1(x1)� cx2)

First-order conditions are u02(x2) = c; u01(x1) = c + u
0
2(x1) � u01(x1) > c:The immediate conclusion is

that the second person consumes optimal amount of good and the �rst person consumes less than optimal

amount of good. Now we need to justify that (IC1) is satis�ed by the solution that we found. First we show

that whenever x1 � x2 then (IC1) will follow from (IR1) and (IC2). From (IR1) and (IC2) we get

r2 = u2(x2)� u2(x1) + u1(x1):

Given that (IR1) is satis�ed with equality, (IC1) becomes

0 � u1(x2)� r2:

Plugging r2, we have that we need to show that

0 � u1(x2)� u2(x2) + u2(x1)� u1(x1):

But indeed we can re-write it as

u2(x2)� u2(x1) � u1(x2)� u1(x1),
Z x2

x1

u02(x)dx �
Z x2

x1

u01(x)dx:

We assumed that u02(x) � u01(x) and thus as long as x2 � x1 we have that (IC1) is satis�ed.
Thus to show that (IC1) is satis�ed by the solution that we found we only need to show that x2 � x1.

It makes our life easier because using only it would be hard to verify it.

Let us check that in the solution that we found x2 � x1. Indeed,

u02(x1) > u
0
1(x1) > c u02(x2) = c:
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The �rst inequality is our assumption, the second one follows from the FOC. Given that ui(x); i = 1; 2

are concave function we have that x2 � x1.
The main interpretation is that the monopolist extract the whole surplus from the �rst agent (who values

the good less), and the second agent enjoys some positive surplus. The second agent also consumes e¢ cient

level of good, whereas the �rst person consumes less than efficient level.

Now we illustrate the second-degree PD. Assume c = 0; if monopoly knows who is who and asks xfd1 pay

A =

x1Z
0

u01(x1)dx = u1(x1); x
fd
2 pay A+ B + C =

x1Z
0

u02(x2)dx = u2(x2): But if the monopoly doesn�t know

who is who, then the second agent gets 0 or B: So how monopoly can induce the second agent to buy xfd2 ?

Monopoly has to provide (xfd1 ; A) and provide (x
fd
2 ; A+C); then the �rst agent will buy (x

fd
1 ; A); the second

agent is indi¤erent to buy (xfd2 ; A+ C), because the surplus of the second agent is B for both.

x

p

x1

A

B

C

u1
v ÝxÞ

u2
v ÝxÞ

x 1
fd x 2

fd

As the picture shows, if the monopoly provides (xfd1 ; A�shadowed triangle), surplus of the second agent
is B�shadowed ladder area); if the monopoly provides (xfd2 ; A + C+shadowed ladder area), surplus of the
second agent is B�shadowed ladder area). So the second agent is indi¤erent. Although monopoly loses the
shadowed triangle on the �rst agent, but gains the shadowed ladder area on the second agent, so we will

move x1 to the left until shadowed triangle is equal to shadowed ladder area.

12.3 Third-degree PD

Assume there are two markets and two di¤erent demand functions.

q1 = p1(x); q2 = p2(x)

The monopoly�s problem is

max
x1;x2

p1(x1)x1 � cx1 + p2(x2)x2 � cx2

First order condition

p1(x1) + p
0
1(x1)x1 = c

p2(x2) + p
0
2(x2)x2 = c

This is equivalent to

p1(x)(1�
1

j"j ) = c

p2(x)(1�
1

j"j ) = c

So the monopolist charges a lower price on a market with more elastic demand.
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13 Social choice and welfare

Society needs to choose from several di¤erent alternatives, such as political candidates or "how to divide a

pie". However, given that di¤erent members have di¤erent preferences how the society should decide?

Let X denote the set of all possible alternatives, N � 2 denotes a number of individuals and Ri denotes
preferences of individual i so that

xRiy , x <i y weak preference

xP iy , x �i y strict preference

xIiy , x �i y indi¤erence

Ri is preference relation, which means it�s complete and transitive. Each person i can rank all available

allocations (x1; x2; ::; xz) according to Ri: We want to derive social choice that represents the preference in

the society. De�ne R as social ranking, "xRy"; means the society prefers x to y; and we want R to be

complete and transitive. Similarly, let P denote social strict preference and I to denote social indi¤erence.

Example 13.1 Majority Rule: assume xRy; i¤ xRiy by majority of people, that is there are at least
N

2
of

those who prefers x to y:The majority rule is complete but not transitive.

Condorcet Paradox: There are three persons and three options (x; y; z): The �rst one ranks as (x; y; z);
the second one ranks as (y; z; x); the third one ranks as (z; x; y). Based on the majority rule the society would

ranks the three options as xRy; yRx; zRx; which is a contradiction (because it�s not transitive). Thus if we

want R to be transitive, we cannot use majority rule.

Our next step is to try to �nd out such a social choice function that takes a vector of individual preferences

R1; R2; ; RN and returns society preferences R. For example,

f(

8><>:
x

y

z

9>=>; ;
8><>:
y

z

x

9>=>; ;
8><>:
z

x

y

9>=>;) = (
8><>:
x

y

z

9>=>;)
Requirements:
1. U (universal domain). Domain of f must be any combination of preferences over x:

2. WP (weak Pareto principle). 8x; y if xP iy; then 8i xPy:
3. IIA (independence from irrelevant alternatives). De�ne R = f(R1; R2; ; RN ); eR = f( eR1; eR2; ; eRN ); if

each person i ranks x over y under Ri in the same way as under eRi;then xRy i¤ x eRy: Social ranking of x
and y does not depend on other alternatives.

4. D (non-dictatorship). There is no such i;8x; y xRy i¤ xRiy regardless of preference of other people.

Theorem 13.2 (Arrow theorem) If there are at least three alternatives in X, then the only social choice
function f that satisfying U;WP; IIA is a dictator social choice function. Note that if jXj = 2; then the

majority rule works.

Another name is Arrow Impossible theorem, which says that there is no function that satisfying U;WP; IIA;D:
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Proof. Step 1: Take an element c 2 X and consider a vector of preferences such that each i puts c in the

bottom then the society should put c on the bottom as well.

R1 R2 Rn RN R8>>><>>>:
x

y

::

c

9>>>=>>>;
8>>><>>>:
x0

y0

::

c

9>>>=>>>; :::
8>>><>>>:
x00

y00

::

c

9>>>=>>>; :::
8>>><>>>:
x000

y000

::

c

9>>>=>>>;)

8>>><>>>:
::

::

::

c

9>>>=>>>;
Step 2: Take person 1 and lift c from the bottom to top, and do it for everyone. During the process, there

will be the �rst time that the social ranking of c increases. Let n be the �rst individual when it happens.

R1 R2 Rn RN R

(�)

8>>>>>><>>>>>>:

c

x

y

::

::

9>>>>>>=>>>>>>;

8>>>>>><>>>>>>:

c

x0

y0

::

::

9>>>>>>=>>>>>>;
:::

8>>>>>><>>>>>>:

c

x00

y00

::

::

9>>>>>>=>>>>>>;
:::

8>>>>>><>>>>>>:

x000

y000

::

::

c

9>>>>>>=>>>>>>;
)

8>>>>>><>>>>>>:

c

::

::

::

::

9>>>>>>=>>>>>>;
Claim: when c comes to the top of Rn, the social ranking of c not just moves up, but moves up to the

top. Now we prove this claim.

Assume 9a; b aRcRb; a 6= c; b 6= c: Change individual preferences so that bP ia for each i, while keeping
the position of c unchanged. By WP , we get bPa. At the same time since ranking between a and c and

between b and c did not change for any i. Thus we can use IIA to conclude that aRc and cRb; then by

transitivity aRb; which contradicts with bPa: So c should be on the top of societal choice.

Step 3: Take a 6= b 6= c: Preferences are the same as in (*). Now change the preference of person n; so
that aPncPnb: For everyone else, change preferences of a and b in any way without changing the position of

c: By IIA, the individual ranking between a and c is the same as one step before (*), thus we get aPc: By

IIA, the individual ranking between b and c is the same as on (*), thus we get cPb: By transitivity, we can

get aPb:

It shows that no matter how person j 6= n; ranks a and b; aPb whenever aPnb. In other words, social
ranking of a and b is consistent with n�s ranking for any a; b; a 6= c; b 6= c: So n is the dictator for all pairs
that do not involve c:

Step 4: Now we want to show that n is dictator. Take another element of x, say d 6= c and repeat all the
steps above. We can �nd the dictator for all pairs that do not involve d: However, the way n ranks c a¤ects

social ranking. Thus it has to be that n is the dictator.

One of the way to get around the Arrow theorem is to relax one of the assumptions. For example we can

relax U since everyone prefers more to less. Another option is to relax IIA.

Example 13.3 Assume there are two people with preferences. Let

1 28><>:
x

y

::

9>=>;
8><>:
y

::

::

9>=>;
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and yRx. Change preferences of agent 1 in such a way that

1 28><>:
x

::

y

9>=>;
8><>:
y

x

::

9>=>;
then by IIA it still has to be the case that yRx. However, consider a social choice function that works as

follows. It assigns 10 to the highest alternative, 9 to the second highest and so on with 0 to the lowest. Then

these values are sum up across di¤erent agents and the alternative with the highest number wins. In this

case for the original preferences we would get yRx and xRy for new preferences.

What happens in the example above is we start making interpersonal comparisons. We notice that in

the �rst case the �rst agent does not dislike y too much, whereas in the second case he seriously dislikes y.

We take it into account by not choosing y. More generally when we relax IIA and allow for interpersonal

comparisons we can have social welfare functions which satis�es fairness or equity:

V (x) = minfu1(x); : : : ; un(x)g

V (x) =
X
i

ui(x):

14 Information economics. Adverse Selection Models

One of the fundamental results in economics are welfare theorems that claim that under certain assumptions

the market equilibrium is Pareto e¢ cient outcome and in this sense is optimal. One of the assumptions

needed for this result to hold is symmetric information which clearly does not hold in real life. For example,

you as a buyer might have inferior knowledge about the product quality as compared to the seller. A simple

illustration to that is a classical model of lemon market.

14.1 Simple adverse selection model. Lemon Market.

There are two types of cars: high- and low-quality cars. Buyers value high-quality cars as vh and low-quality

as vl. We assume that vh > vl and that ch > cl that is it is costlier to produce a good car. We also assume

that

vh > ch > cl > vl;

that is it is e¢ cient to sell high-quality cars and ine¢ cient cars should not be even produced.

Let � be a share of h-cars. We assume that

ch > (1� �)vl + �vh > (1� �)cl + �ch:

The latter inequality means that there is ex-ante gain from trade. The former means that when buyers

are uncertain about the car quality it is not pro�table for h-sellers to sell their cars.

Proposition 14.1 Under perfect information only high-quality cars are sold.

Proof. This statement is so obvious I can�t believe you are actually reading the proof. It is absolutely
straightforward and immediately follows from the assumptions that we made. So stop reading. There.
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Proposition 14.2 When buyers cannot observe car�s quality the equilibrium does not exist. Put it di¤erently
there is no price that will clear the market.

Proof. Consider three cases:

� p < cl: supply is zero and demand is positive;

� cl � p < ch: supply is 1� � and demand is zero;

� p � ch: supply is 1 but demand is zero.

Thus there is no price when supply of cars is equal to the demand.

The intuition here is as follows. Normally when market does not clear the price is used to equilibrate it.

For example, if supply is greater than demand the price will fall down and it will supply and demand meet.

Here, it is not quite the case. When p � ch the supply is higher than demand. As the price goes down the
supply indeed decrease, however, so does the average car quality which prevents D from increasing. What we

have here is called adverse selection because it is good cars that are �ltered out the �rst, and it is bad cars

that stay on the market longest.

Assume there is an auto insurance market and two types of drivers: type L; the low risk driver, with

a probability of being in an accident �L; and type h; the high risk driver, with a probability of being in

an accident �h: We assume that �h > �L. We also assume that if accident happens, then the loss is the 1

regardless of the driver�s type. Insurance company sells insurance, 1 units of insurance pays back $L; thus its

pro�t is (p��L)y; in which p is the price of one unit of insurance, y is how much of insurance was purchased
and �nally � is the probability of the accident.

14.2 Insurance. Symmetric information

Insurance company knows which type of driver it deals with and sells two goods: insurance that pays L to

type L, and insurance that pays L to type H. The maximization problem of consumer of type h if he buys

insurance is

max
�
�hu(w � L� ph� + �L) + (1� �h)u(w � ph�)

�h(L� ph)u0(w � L� ph� + �L)� (1� �h)phu(w � ph�) = 0

If ph = �hL; then we get � = 1; which means the risk aversion agent buys full insurance.

As for the insurance company, they want to max pro�t

max
y
(p� �hL)

if p > �hL) y =1
p < �hL) y = 0

p = �hL) y 2 [0;1]

Thus in the equilibrium p = �hL and the high-type consumer buys one unit of insurance. Similarly, if

pL = �LL, the low-type driver also buys one unit of insurance. In conclusion, in the equilibrium, price is

fair and �rms earn zero pro�t while consumers buy full insurance.
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14.3 Insurance. Asymmetric information

Consumers know their type and �rms do not know. Assume probability of accidents is given. Then the

problem is similar to the second-degree price discrimination.

Suppose consumers can buy 0 or 1 unit of insurance at price p. The consumer will buy 1 unit of insurance

if

�u(w � L) + (1� �)u(w) 6 u(w � p)

By transfers, we get

� > u(w)� u(w � p)
u(w)� u(w � L) =: g(p)

Properties of g:
1. g(0) = 0:

2. g(1) = 1:

3. g(p) is an increasing function.

If g(p) is the probability of an accident, then an agent would be indi¤erent between paying p for insurance

or not. Agent observes p and if � > g(p); he buys; if � < g(p); he does not buy; if � = g(p); he is indi¤erent.

Assume there are two price p1; p2; and �L = g(p1); �h = g(p2): When p1 > �LL; if the price is fair, the

consumer will buy one unit. This can be illustrated by the following picture.

^ÝpÞ

p

^L

1

^h

p1 p2 Lboth type buy
high type buy no type buy

Now assume the probability of low-type is �; high-type is 1��: If both types buy, then the expect pro�t
is

[�(p� �LL) + (1� �)(p� �hL)]y

Just as before in equilibrium

�(p� �LL) + (1� �)(p� �hL) = 0
peq = ��LL+ (1� �)�hL

There are three insurance purchase conditions:

1. If �hL < p1; then there is only one equilibrium with p = ��LL+(1��)�hL and both types buy. Here
p = �hL is not an equilibrium because both types buy insurance, then pro�t is positive, supply is in�nite.

This is e¢ cient equilibrium because both types are insured.

2. If ��LL + (1 � �)�hL < p1 < �hL; then there are two equilibria with p = ��LL + (1 � �)�hL and
both types buy and �rms earn zero pro�t. When p = �hL, only h type buys and �rms earn zero pro�t.
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^hL

p eq = J^LL + Ý1 ? JÞ^ hL

^ÝpÞ

pp1 p2

^hL

p eq = J^LL + Ý1 ? JÞ^ hL

^LL

3. If p = �hL, only h type buys, and there is only one equilibrium. Firms earn zero pro�t. This is

ine¢ cient equilibrium because low-type stays uninsured.

The key di¤erence from the world with complete information is that now as you increase price, you will

not increase pro�t, because low-type consumers drop out of the market and you deal with risky pool of

drivers. That�s adverse selection.
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