Peer-reviewed Journal Articles and Book Chapters
Journal Publications:
- Chen, G., Zhou, Y., Voogt, J. A., & Stokes, E. C. (2024). Remote sensing of diverse urban environments: From the single city to multiple cities. Remote Sensing of Environment, 305, 114108.
- Chen, G., Hammelman, C., Anantsuksomsri, S., Tontisirin, N., Todd, A. R., Hicks, W.W., Robinson, H. M., Calloway, M.G., Bell, G.M., & Kinsey, J. E., III (2024). Fine-Scale (10 m) Dynamics of Smallholder Farming through COVID-19 in Eastern Thailand. Remote Sensing, 16, 1035.
- Xie, K., Zhu, J., Ren, H., Wang, Y., Yang, W., Chen, G., Lin, C., & Zhai, R. (2024). Delving into the Potential of Deep Learning Algorithms for Point Cloud Segmentation at Organ Level in Plant Phenotyping. Remote Sensing, 16, 3290.
- Anantsuksomsri, S., Positlimpakul, K., Chatakul, P., Janpathompong, D., Chen, G., & Tontisirin, N. (2024). Carbon sequestration analysis of the university campuses in the Bangkok Metropolitan Region. Journal of Infrastructure, Policy and Development, 8(6), 3385.
- Wang, T., Zhou, C., Qian, Y., Chen, G., Zhu, D., Zhu, Y., & Liu, Y. (2023). Basal Channel System and Polynya Effect on a Regional Air-Ice-Ocean-Biology Environment System in the Prydz Bay, East Antarctica. Journal of Geophysical Research: Earth Surface, 128, e2023JF007286.
- Hu, J., Zhou, Y., Yang, Y., Chen, G., Chen, W., & Hejazi, M. (2023). Multi-city assessments of human exposure to extreme heat during heat waves in the United States. Remote Sensing of Environment, 295, 113700.
- Shukla, T., Tang, W., Trettin, C.C., Chen, G., Chen, S., Allan, C. (2023). Quantification of Microtopography in Natural Ecosystems Using Close-Range Remote Sensing. Remote Sensing, 15, 2387.
- Zhang, T., Zhou, Y., Zhao, K., Zhu, Z., Chen, G., Hu, J., & Wang, L. (2022). A global dataset of daily maximum and minimum near-surface air temperature at 1km resolution over land (2003–2020). Earth System Science Data, 14, 5637–5649.
- Nickerson, S., Chen, G., Fearnside, P.M., Allan, C.J., Hu, T., de Carvalho, L.M.T., & Zhao, K. (2022). Forest loss is significantly higher near clustered small dams than single large dams per megawatt of hydroelectricity installed in the Brazilian Amazon. Environmental Research Letters, 17, 084026.
- Zhang, Y., Chen, G., Myint, S.W., Zhou, Y., Hay, G.J., Vukomanovic, J., & Meentemeyer, R.K. (2022). UrbanWatch: A 1-meter resolution land cover and land use database for 22 major cities in the United States. Remote Sensing of Environment, 278, 113106.
- Zhou, Y., Chen, G., & Zhou, W. (2022). Sustainable urban systems: from landscape to ecological processes. Ecological Processes, 11, 26.
- Chen, W., Y. Zhou, Y. Xie, G. Chen, K. J. Ding, & D. Li (2022). Estimating spatial and temporal patterns of urban building anthropogenic heat using a bottom-up city building heat emission model. Resources, Conservation and Recycling, 177, 105996.
- Hu, T., Toman, E. M., Chen, G., Shao, G., Zhou, Y., Li, Y., Zhao, K., & Feng, Y. (2021). Mapping fine-scale human disturbances in a working landscape with Landsat time series on Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 176: 250-261.
- He, Y., Chen, G., Cobb, R.C., Zhao, K., & Meentemeyer, R.K. (2021). Forest landscape patterns shaped by interactions between wildfire and sudden oak death disease. Forest Ecology and Management, 486: 118987.
- Dutta, D., Chen, G., Chen, C., Gagné, S.A., Li, C., Rogers, C., & Matthews, C. (2020). Detecting Plant Invasion in Urban Parks with Aerial Image Time Series and Residual Neural Network. Remote Sensing, 12: 3493.
- Chen, W., Zhou, Y., Wu, Q., Chen, G., Huang, X., & Yu, B. (2020). Urban Building Type Mapping Using Geospatial Data: A Case Study of Beijing, China. Remote Sensing, 12: 2805.
- Zhang, Y., Chen, G., Vukomanovic, J., Singh K.K., Liu, Y., Holden, S., & Meentemeyer, R.K. (2020). Recurrent Shadow Attention Model (RSAM) for shadow removal in high-resolution urban land-cover mapping. Remote Sensing of Environment, 247: 111945.
- Chen, G., Singh, K.K., Lopez, J., Zhou, Y. (2020). Tree canopy cover and carbon density are different proxy indicators for assessing the relationship between forest structure and urban socio-ecological conditions. Ecological Indicators, 113: 106279.
- He, Y., G. Chen, C. Potter, and R.K. Meentemeyer (2019). Integrating multi-sensor remote sensing and species distribution modeling to map the spread of emerging forest disease and tree mortality. Remote Sensing of Environment, 231: 11238.
- Lopez, J., Branch, J. W., Chen, G. (2019). Line-based image segmentation method : a new approach to segment VHSR remote sensing images automatically. European Journal of Remote Sensing, 52: 613–631.
- Wei, Y., X. Tong, G. Chen, D. Liu, Z. Han (2019). Remote Detection of Large-Area Crop Types: The Role of Plant Phenology and Topography. Agriculture, 9: 150.
- Whiteman, A., Gomez, C., Rovira, J., Chen, G., McMillan W.O., and Loaiza, J. (2019). Aedes Mosquito Infestation in Socioeconomically Contrasting Neighborhoods of Panama City. EcoHealth, 16: 210-221.
- Chen, S., A. Whiteman, A. Li, T. Rapp, E. Delmelle, G. Chen, C.L. Brown, P. Robinson, M.J. Coffman, D. Janies, and M. Dulin (2019). An operational machine learning approach to predict mosquito abundance based on socioeconomic and landscape patterns. Landscape Ecology, 34: 1295-1311.
- He, Y., G. Chen, A. De Santis, D. A. Roberts, Y. Zhou, R. K. Meentemeyer (2019). A Disturbance Weighting Analysis Model (DWAM) for Mapping Wildfire Burn Severity in the Presence of Forest Disease. Remote Sensing of Environment, 221: 108-121.
- Chen, G., J.-C. Thill, S. Anantsuksomsri, N. Tontisirin, R. Tao (2018). Stand age estimation of rubber (Hevea brasiliensis) plantations using an integrated pixel- and object-based tree growth model and annual Landsat time series. ISPRS Journal of Photogrammetry and Remote Sensing, 144: 94-104.
- Whiteman, A., E. Delmelle, T. Rapp, S. Chen, G. Chen, M. Dulin (2018). A novel sampling method to measure socioeconomic drivers of Aedes albopictus distribution in Mecklenburg County, North Carolina. International Journal of Environmental Research and Public Health, 15: 2179.
- Liu, D., E. Thoman, Z. Fuller, G. Chen, A. Londo, X. Zhang, K. Zhao (2018). Integration of historical map and aerial imagery to characterize long-term land-use change and landscape dynamics: An object-based analysis via Random Forests. Ecological Indicators, 95: 595-605.
- Chen, G., Q. Weng, G.J. Hay, Y. He (2018). Geographic Object-based Image Analysis (GEOBIA): Emerging trends and future opportunities. GIScience & Remote Sensing, 55: 159-182.
- Chen, G., Q. Weng (2018). Special issue: Remote sensing of our changing landscapes with Geographic Object-based Image Analysis (GEOBIA). GIScience & Remote Sensing, 55: 155-158. (Editorial)
- Li, W., Y. Zhou, K. Cetin, J. Eom, Y. Wang, G. Chen, X. Zhang (2017). Modeling urban building energy use: A review of modeling approaches and procedures. Energy, 141: 2445-2457.
- Chen, G., Y. He, A. De Santis, G. Li, R. Cobb, R.K. Meentemeyer (2017). Assessing the impact of emerging forest disease on wildfire using Landsat and KOMPSAT-2 data. Remote Sensing of Environment,195: 218-229.
- Cai, Y., G. Chen, Y. Wang, and L. Yang (2017). Impacts of land cover and seasonal variation on maximum air temperature estimation using MODIS imagery. Remote Sensing, 9: 233.
- Chen, G., E. Ozelkan, K. K. Singh, J. Zhou, M. R. Brown, and R. K. Meentemeyer (2017). Uncertainties in mapping forest carbon in urban ecosystems. Journal of Environmental Management,187: 229-238.
- Singh, K.K., R. Bianchetti, G. Chen, and R.K. Meentemeyer (2017). Assessing effect of dominant land-cover types and pattern on urban forest biomass estimated using LiDAR metrics. Urban Ecosystems, 20: 265-275.
- Singh, K.K., G. Chen, J.B. Vogler and R.K. Meentemeyer (2016). When Big Data are Too Much: Effects of LiDAR Returns and Point Density on Estimation of Forest Biomass. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9: 3210-3218.
- Ozelkan, E., G. Chen, and B.B. Ustundag (2016). Spatial Estimation of Wind Speed: A New Integrative Model Using Inverse Distance Weighting and Power Law. International Journal of Digital Earth, 9: 733-747.
- Ozelkan, E., G. Chen, and B.B. Ustundag (2016). Multiscale object-based drought monitoring and comparison in rainfed and irrigated agriculture from Landsat 8 OLI imagery. International Journal of Applied Earth Observation and Geoinformation, 44: 159-170.
- Chen, G., R.P. Powers, L. M. T. de Carvalho and B. Mora (2015). Spatiotemporal patterns of tropical deforestation and forest degradation in response to the operation of the Tucuruí hydroelectric dam in the Amazon basin. Applied Geography, 63: 1-8.
- Lu, J., J. Li, G. Chen, L. Zhao, B. Xiong and G. Kuang (2015). Improving Pixel-Based Change Detection Accuracy Using an Object-Based Approach in Multitemporal SAR Flood Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8: 3486-3496.
- Zhao, K., M. García, S. Liu, Q. Guo; G. Chen, X. Zhang, Y. Zhou and X. Meng (2015). Terrestrial lidar remote sensing of forests: Maximum likelihood estimates of canopy profile, LAI, and leaf angle distribution. Agricultural and Forest Meteorology, 209-210: 100-113.
- Chen, G., M.R. Metz, D.M. Rizzo and R.K. Meentemeyer (2015). Mapping burn severity in a disease-impacted forest landscape using Landsat and MASTER imagery. International Journal of Applied Earth Observation and Geoinformation, 40: 91-99.
- Chen, G., M.R. Metz, D.M. Rizzo, W.W. Dillon and R.K. Meentemeyer (2015). Object-based assessment of burn severity in diseased forests using high-spatial and high-spectral resolution MASTER airborne imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 102: 38-47.
- Singh, K.K., G. Chen, J.B. McCarter and R.K. Meentemeyer (2015). Effects of LiDAR point density and landscape context on estimates of urban forest biomass. ISPRS Journal of Photogrammetry and Remote Sensing, 101:310-322.
- Godwin, C., G. Chen, K. K. Singh (2015). The impact of urban residential development patterns on forest carbon density: An integration of LiDAR, aerial photography and field mensuration. Landscape and Urban Planning, 136: 97-109.
- Powers, R.P., T. Hermosilla, N.C. Coops and G. Chen (2015). Remote sensing and object-based techniques for mapping fine-scale industrial disturbances. International Journal of Applied Earth Observation and Geoinformation, 34: 51-57.
- Hultquist, C., G. Chen and K. Zhao (2014). A Comparison of Gaussian Process Regression, Random Forests and Support Vector Regression for Burn Severity Assessment in Diseased Forests. Remote Sensing Letters, 5:723-732.
- Chen, G., K. Zhao and R. Powers (2014). Assessment of the Image Misregistration Effects on Object-based Change Detection. ISPRS Journal of Photogrammetry and Remote Sensing, 87:19-27.
- Wulder, M.A., J.C. White, C.W. Bater, N.C. Coops, C. Hopkinson, and G. Chen. (2012). Lidar plots-a new large-area data collection option: context, concepts, and case study. Canadian Journal of Remote Sensing, 38:600-618.
- Chen, G., M.A. Wulder, J.C. White, T.H. Hilker, and N.C. Coops. (2012). Lidar calibration and validation for geometric-optical modeling with Landsat imagery. Remote Sensing of Environment, 124:384-393.
- Chen, G., G. J. Hay, L. M. T. Carvalho and M. A. Wulder (2012). Object-Based Change Detection. International Journal of Remote Sensing, 33:4434-4457.
- Chen, G., G. J. Hay and B. St-Onge (2012). A GEOBIA framework to estimate forest parameters from lidar transects, Quickbird imagery and machine learning: a case study in Quebec, Canada. International Journal of Applied Earth Observation and Geoinformation, 15:28-37.
- Powers, R., G. J. Hay and G. Chen (2012). How wetland type and area differ through scale? A case study of Alberta’s Boreal Plains. Remote Sensing of Environment, 15: 135-145.
- Chen, G., K. Zhao, G. J. McDermid and G. J. Hay (2012). The influence of sampling density on geographically weighted regression: a case study using forest canopy height and optical data. International Journal of Remote Sensing, 33:2909-2924.
- Hay, G. J., C. D. Kyle, B. Hemachandran, G. Chen, M. M. Rahman and T. S. Fung (2011). Geospatial Technologies to Improve Urban Energy Efficiency. Remote Sensing, 3: 1380-1405.
- Chen, G. and G. J. Hay (2011). A support vector regression approach to estimate forest biophysical parameters at the object level using airborne lidar transects and Quickbird data. Photogrammetric Engineering and Remote Sensing, 77:733-741.
- Chen, G. and G. J. Hay (2011). An airborne lidar sampling strategy to model forest canopy height from Quickbird imagery and GEOBIA. Remote Sensing of Environment, 115:1532-1542.
- Chen, G., G. J. Hay, G. Castilla, B. St-Onge and R. Powers (2011). A multiscale geographic object-based image analysis (GEOBIA) to estimate lidar-measured forest canopy height using Quickbird imagery. International Journal of Geographic Information Science, 25:877-893.
- Shen, Q., G. Chen, D. E and C. Zhou (2011). Recent elevation changes on the Lambert-Amery system in East Antarctica from ICESat crossover analysis. Chinese Journal of Geophysics, 54: 1983-1989. (In Chinese)
- E, D., Q. Shen, Y. Xu and G. Chen (2009). High-accuracy topographical information extraction based on fusion of ASTER stereo-data and ICESat/GLAS data in Antarctica. Science in China Series D: Earth Sciences, 52: 714-722.
- Chen, G. and D. E (2007). Support Vector Machines for Cloud Detection over Ice-Snow Areas. Geo-spatial Information Science, 10: 117-120.
- Chen, G. and D. E (2006). Cloud Detection Based on Texture Analysis and SVM over Ice-snow Covered Areas. Geomatics and Information Science of Wuhan University, 31: 403-406. (In Chinese)
- E, D. and G. Chen (2005). Detection of Cloud, Snow and Ice Based on ETM+ Thermal Infrared Imagery in Antarctica. Geomatics and Information Science of Wuhan University, 30: 913-916. (In Chinese)
- E, D. and G. Chen (2005). Cloud Detection of Multispectral Images in Antarctica Based on Wide Thresholds and A Gradient Algorithm. Chinese Journal of Polar Research, 17: 93-98. (In Chinese)
- Chen, G. and D. E (2005). Digital Orthographic Mapping of Antarctic Areas. Journal of Geomatics, 30: 7-8. (In Chinese)
Book Chapters:
- Reeves, M., I. Ibáñez, D. Blumenthal, G. Chen, Q. Guo, C. Jarnevich, J. Koch, F. Sapio, M. Schwartz, R.K. Meentemeyer, B. Wylie, and S. Boyte (2021). Chapter 11: Tools and Technologies for Quantifying Spread and Impacts of Invasive Species. In Poland, Therese M.; Patel-Weynand, Toral; Finch, Deborah M.; Ford Miniat, Chelcy; Hayes, Deborah C.; Lopez, Vanessa M. (Ed.), Invasive Species in Forests and Rangelands of the United States: A Comprehensive Science Synthesis for the United States Forest Sector. Heidelberg, Germany: Springer International Publishing. 455p.
- Singh, K. K., L. Smart, and G. Chen (2018). LiDAR and optical data integration for coastal wetland assessment. In Q. Weng, Y. He (Ed.), High Spatial Resolution Remote Sensing: Data, Techniques, and Applications (pp. 71-88). Boca Raton, Florida: CRC Press, Taylor & Francis Group.
- Chen, G., and R.K. Meentemeyer (2016). Remote Sensing of Forest Damage by Diseases and Insects. In Q. Weng (Ed.), Remote Sensing for Sustainability (pp. 145-162). Boca Raton, Florida: CRC Press, Taylor & Francis Group.